Characterization of Biorefinery Lignins and Comparison
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INTRODUCTION

Utilizing biomass solely for biofuel production poses an economic
challenge mainly due to the low value of fuel. Generating valuable co-
products in addition to biofuel from the biomass-to-biofuel
conversion process is the key to overcome this economic barrier. It is
expected that enormous amounts of bio-refinery lignin will be
generated as a waste stream during the bio-refining process. Thus,
there are increasing interests in converting lignin to value added co-
products. Promising pathways have been discovered whereby lignin
can be oxidatively converted to valuable chemicals such as
dicarboxylic acids and monomeric phenolic compounds. New lignin
sources have been identified by National Advanced Renewables
Alliance (NARA). However, the structural characteristics of these
lignin samples and their potential for value added chemical
conversion is not well understood. This project aims to characterize
and compare the structures of five representative bio-refinery lignins
and determine their reactivity toward oxidative conversion to
dicarboxylic acids and monomeric phenolic compounds.

MATERIALS AND METHOD

Nitrobenzene oxidation, thioacidolysis and Klason lignin
content(National Renewable Energy Laboratory (NREL) laboratory
analytical procedure (2011)) , were carried out on Milled Wood Lignin
(MWL), Diluted Acid Corn Stover Lignin (DACSL), Alkali-extracted
Wheat Straw Lignin (Soda- WSL), Sulfite Pretreatment to Overcome
Recalcitrance of Lignocellulose (SPORL) Douglas Fir lignin and Deep
Eutectic Solvent (DES) Douglas Fir lignin. Lignin reactivity was tested
and compared based on previously reported oxidative
depolymerization methods for monophenol and dicarboxylic acid
production.
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Image 3. Thioacidolysis extracts,

Nitrobenzene Oxidation

This method was used for the determination of p-hydroxyphenyl (H),
syringly (S) and guaiacyl (G) lignin substructures ratio. Lignin samples
were heated with aqueous sodium hydroxide and nitrobenzene after
which extractions were done under alkaline conditions then acidic.
Gas Chromatography- Mass Spectrometry (GC-MS) was used for
product analysis.

Thioacidolysis

This method was used for the determination of H/S/G ratio by
cleavage of B-O-4 linkages in lignin. Lignin samples were heated with
dioxane/ ethanthiol solution, containing boron trifloride etherate,
and docosane. Extractions were then done under acidic conditions.
GC-MS was used for product analysis.

Klason Lignin Content

This method was used to approximate the Klason lignin content of
samples. Samples were subjected to a two- step acid hydrolysis
procedure then analyzed on an oven weight basis.
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Figure 1. Demonstration of lignin derivation from different pretreatment methods.

RESULTS
Ligni racterization
Lignin Klast')n Nitrob Thioacidolysis

% H S G H S G

DACSL 72 25 30 45 19 35 46
SPORL 23 5 = O5] 8 = 92
DES Lignin 90 14 = 85 3 = 95

Soda- WSL 58 7 43 50 8 45 47

MWL 54 B} ° 97 4 ° 96

Table 1. Klason lignin content and H/G/S ratios of lignin samples as determined by NREL lignin
fractionation, nitrobenzene oxidation and thioacidolysis .

Lignin Reactivity towards Oxidative Conversion to Low
Molecular Weight Phenolic Compounds (LMWPC) and
Dicarboxylic acids (DCA)
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Figure 2. LMWPC and DCA yields determined by GC-MS from catalysts assisted oxidative conversion of
biorefinery lignin at 3060 °C during a period of 0.5 hours.

CONCLUSION

In this work, we have prepared five representative biorefinery lignins.
The HSG ratio of lignin was determined by both nitrobenzene
oxidation and thioacidolysis. These lignins also showed different
reactivity towards niobium assisted paa conversion to LMWPC and
chalcopyrite catalyzed direct conversion to DCAs.
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