

Environmental Sustainability

Logistics

Kevin Boston, OSU John Sessions, OSU Rene Zamora-Cristales, OSU Greg Latta, OSU

Wildlife

Matt Betts, OSU Jim Rivers, OSU Heather Root, Weber State Jeff Hatten, OSU

Water Quality

John Petrie, WSU Michael Barber, UU

Air Quality

Brian Lamb, WSU Vikram Ravi, WSU

Forest Productivity and Soils

Doug Maguire, OSU

Doug Mainwaring, OSU

Rob Harrison, UW

Scott Holub, Weyerhaeuser

Jeff Hatten, OSU

Adrian Gallo, OSU

Northwest Advanced Renewables Alliance

Define: Sustainability

- Sustainability endurance of systems and processes
 - Economic
 - Social
 - Environment

https://en.wikipedia.org/wiki/Sustainability Scott Cato, M. (2009). Green Economics. London: Earthscan, pp. 36–37.

Environmental Sustainability

 The rates of renewable resource harvest, pollution creation, and non-renewable resource depletion that can be continued indefinitely

Environmental Sustainability

- What are the impact of forest residual harvesting on the environment?
 - Long-term Forest Productivity
 - Water Quality
 - Air Quality
 - Soil Carbon
 - Wildlife

Simplified Conceptual Model

Simplified Conceptual Model

Biomass Removal: Components

Bole-only Harvest – "Conventional"

Bole-only Harvest – "Conventional"

Bole-only Harvest – "Conventional"

Constraints Presentation

Long-Term Nutrient Balance May Limit Forest Growth

- Growth limiting factors
 - Water
 - Light/Space
 - Nutrients

Biomass Harvest = Nutrient Harvest

- The amount of biomass removed will dictate the quantity of nutrients removed
- The long term balance of nutrients will influence long-term site productivity

Harvest 1

Harvest 2

Balance of Nutrients is Key

- Soils are not static
- Inputs include:
 - Atmospheric deposition
 - Dust, Pollution, Lightning fixed N, etc.
 - Weathering
 - Rocks dissolve
- Outputs include:
 - Leaching
 - Harvesting

Atmospheric Deposition

Productivity Presentation

Ecosystem Services

- Air Quality
- Water Quality
- Soil Carbon
- Wildlife/Pollinators

Two Harvest Scenarios

Whole Tree Harvest + Forest Floor

Whole Tree Harvest + Forest Floor

Three Experimental Harvest Scenarios

These experimental treatments bracket the potential postharvest conditions and allow us to interpolate reality

Air

Soil

Water

Wildlife

Complications

- Spatial distribution of residuals
 - Affect variability of productivity across stand
 - Soil resources depleted where residuals removed
 - Piles concentrate soil resources
 - Affect wildlife
 - Relationship to roads
 - Piles? Scattered? Burned?
 - Water quality
 - Disturbed near roads, roads have ditches, ditches are problem areas in forests
- Residuals ≠ Non-bole aboveground components
 - Stumps and roots may be important for site nutrition as well as soil carbon

Feedbacks

Complications

- Change in techniques
 - Harvesting
 - Harvesting BMPs
 - Site Prep/Regeneration
 - Fertilization
 - Mid Rotation Treatments
- Change in technology
 - Harvesters
- Productivity scenarios account for this by showing worst/best/NARA
- ?

Conclusions

- Not logistically or economically feasible to harvest all residues
 - May change as technique and technology changes
- Whole-tree or NARA harvesting scenarios have a low risk to deplete nutrients
 - Probably little short-term impact on productivity
 - Long-term may need BMP, mitigation, or change in technique
- Harvest impact could affect soil physical environment and heterotrophic activity
 - Decrease soil carbon?
 - Increase available nutrients?
 - Role of stumps and roots?
- Costs and benefits to wildlife depending on the approach (winners and losers)
 - Balance should be a goal
 - If you manage everything to be old growth, you'll lose habitat for early seral species
- Increase in sediment flux which may impact water quality
 - Potentially mitigated with BMPs adapted to biomass harvesting
- Some improvement in air quality as result of fewer piles burned

