

Forest Fertilization to Increase Biofuel Feedstock and Soil C Sequestration in Coastal PNW Forests Rob Harrison, Dave Briggs, Kim Littke and Eric Turnblom

Abstract

We examined whether N fertilization of Douglas-fir (Psuedotsuga menziesii [Mirb.]) plantations in western Washington and Oregon State could affect C sequestration in trees and soil. Nine unthinned and six thinned sites of the Pacific Northwest Stand Managment Cooperative (SMC), which received 1000 kg N/ha over a 16-y period, were compared with adjacent unfertilized control sites. Carbon contained in the live trees was estimated using biomass equations and average carbon concentrations. There was more C estimated to be stored in live trees of the fertilized vs. control plots. On average, fertilized trees contained 10.5 percent more C (average 24 Mg/ ha) than the control plots in the unthinned and 22.5 percent more C (average 38 Mg/ha) than the control plots for the live trees in the thinned stands. In two studies of six stands, an additional 19.1 Mg C/ha accumulated in the soil and other non-live-tree stand components. This study suggests that N fertilization of commercial forests in western Washington could substantially increase C stored in these forest ecosystems. Considering that there are approximately 20.9 million hectares of forest land in the states of Washington and Oregon, fertilization could result in an additional 1.19 Pg of additional carbon sequestrated during a single rotation of forestland, a period of approximately 40 years, for an average of 0.03 Pg/year. How much of this C would offset fossil fuel use in the long-term is unclear.

Helicopter application of urea is the most common fertilization method in the mountainous PNW. Applications can be made very precisely, minimizing potential for runoff and maximizing fertilizer response.

Northwest Advanced Renewables Alliance

University of Washington, Seattle WA 98195-2100; robh@uw.edu

	Table 1. Av	verage Tree C	contents	for unthin	ned SMC	plots.
	Installation	Age at last	to	tal biomass		%
z	ID	measurement	0 N	1000 N	difference	difference
				—— kg/ha —		
	5	64	246,498	292,404	45,906	18.6
	53	54	347,720	431,212	83,493	24.0
	54	63	167,447	196,777	29,330	17.5
	57	61	397,649	439,254	41,606	10.5
WASHINGTON	76	60	220,032	316,104	96,072	43.7
	77	42	172,062	132,327	-39,735	-23.1
• • •	95	52	204,651	199,246	-5,405	-2.6
	101	54	179,941	163,248	-16,693	-9.3
	113	50	155,247	140,399	-14,848	-9.6
		average	232,361	256,775	24,414	10.5
	Table 2.	Average Tree	e C conter	nts for thin	ned SMC	plots.
	Installatio	on Age at las	t	total bioma	SS	%
• • • •		D measuremen	t 0 N	1000 N	differen	ce difference
				kg/ha	a	
	11	18 57	7 143,43			64 66.6
	12		,	•	•	
	12		,	,	•	
	13		,	•	•	
	13		,	•		
•	15		,	,	•	
Figure 1. Location of SMC study		average	,	,		

sites in WA and OR.

Table 3. Po	tential tree C sequestration	Table 4. Po	tential soil C sequestration
If all comme	cial forest land in PNW was fertilized	If all commen	cial forest land in PNW was fertilized
37.6	Mg C/ha increase over 40 y rotation	19.1	Mg C/ha increase over 40 y rotation
20,900,000	hectares manageable forest land in WA and OR	20,900,000	hectares manageable forest land in WA and OR
785,840,000	Mg C 40 y rotation	399,190,000	Mg C 40 y rotation
0.786	Pg C	0.399	Pg C
0.020	Pg C/year	0.010	Pg C/year
Currently onl	y about 25,000 ha fertilized/y in PNW	Currently onl	y about 25,000 ha fertilized/y in PNW
	y about 25,000 ha fertilized/y in PNW Mg C/ha increase over 40 y rotation	_	y about 25,000 ha fertilized/y in PNW Mg C/ha increase over 40 y rotation
37.6		19.1	
37.6 1,200,000	Mg C/ha increase over 40 y rotation	19.1 1,200,000	Mg C/ha increase over 40 y rotation
37.6 1,200,000	Mg C/ha increase over 40 y rotation hectares manageable forest land in WA and OR Mg C 40 y rotation	19.1 1,200,000	Mg C/ha increase over 40 y rotation hectares manageable forest land in WA and OR Mg C 40 y rotation
37.6 1,200,000 45,120,000 0.045	Mg C/ha increase over 40 y rotation hectares manageable forest land in WA and OR Mg C 40 y rotation	19.1 1,200,000 22,920,000 0.023	Mg C/ha increase over 40 y rotation hectares manageable forest land in WA and OR Mg C 40 y rotation

The C contents of nine fertilized, unthinned and six fertilized, thinned stands were estimated using stand measurements and estimation equations (Gholz et al., 1979). Tables 1 and 2 show results. There was 24 Mg C/ha (10.5%) more in the fertilized, unthinned, and 38 Mg C/ha (22.5%) in the fertilized, thinned sites. The estimate for increases in the overall biomass that could be achieved with fertilization of all forest land is 0.79 Pg over 40 years for trees and 0.40 Pg for soils, or about 0.02 Pg/year in tree biomass and 0.01 in soil (Table 3 and 4).

Impacts of N fertilization on soil in this region have proven to be highly variable, particularly with regard to soil mineralogy. Canary et al. (2001) found an average of 8 Mg C/ha additional C 16 years following fertilization in three glacial-origin soils, while Adams et al. (2005) found much more variable results, with an average of 30.1 Mg C/ha in two glacial-origin and one volcanic-origin soils. For this poster, we used an average of the two studies, 19.1 Mg C/ha for calculating the impacts of large additions of N (about 1000 Mg N/ha) on soil C sequestration.

There exists a substantial potential for additional C sequestration through N fertilization in the PNW region. If all commercial land was fertilized as in the studies of Canary et al (2001) and Adams et al. (2005), the effect could be > 1 Pg C over a 40-y period or 0.03 Pg C/y. However, currently a much smaller potential C sequestration is being realized because only a small fraction of forest land (about 25,000 ha/y) is being fertilized, and a smaller C sequestration being realized.

Adams, A.B., R.B. Harrison, R.S. Sletten, B.D. Strahm, E.C. Turnblom and C.M. Jensen. 2005. Nitrogen-fertilization impacts on carbon sequestration and flux in managed coastal Douglas-fir stands of the Pacific Northwest. For. Ecol. Manage. 220:313-325.

Canary, J.D., R.B. Harrison, J.E. Compton and H.N. Chappell. 2001. Additional carbon sequestration following repeated urea fertilization of second-growth Douglasfir stands in western Washington. For. Ecol. Manage. 138:225-232.

Gholz, H.S., C.C. Grier, A.G. Campbell and A.T. Brown. 1979 Equations for estimating biomass and leaf area of plants in the Pacific Northwest. Forest Research Lab, Oregon State University, Corvallis, OR.

Results and Discussion

Conclusions

References

