

Market Opportunities and Challenges Facing the Economically PENNSTATE 1 8 5 5 Viable Production of Renewable Chemicals in U.S. Biorefineries

Min Chen and Dr. Paul M. Smith Department of Agricultural and Biological Engineering, Penn State University

Introduction

Restricted by the current situation of the ethanol surplus problem and the "foodvs.-fuel" debate, biorefineries have been striving to diversify their portfolios in order to enhance economic competitiveness of biore (Babcock et al., 2011). During the past five years, research interests have focused on building biorefineries with non-food based feedstocks (Sim 2008). However, these advanced biofuel biorefineries are impeded by fee availability, technological sophistication, and capital investment (Fiorese FitzPatrick et al., 2010). Others are trying to make full use of the raw mat producing value-added co-products with biofuels (de Jong et al., Specifically, some biorefineries (such as Gevo, Amyris, Cargill, etc.) are to integrate the production of high-value renewable chemicals with low biofuels (Amidon et al., 2008; FitzPatrick et al., 2010). However, there is list of possible renewable chemicals that could be produced from biored and the production of renewable chemicals is dependent upon techn development, adequate facilities and downstream market demand (Boz Petersen, 2010; Himmel et al., 2007). Therefore, the main concern research is to understand the market opportunities and challenges fac economically viable production of renewable chemicals.

Northwest Advanced Renewables Alliance

Top 22 Renewable Chemicals

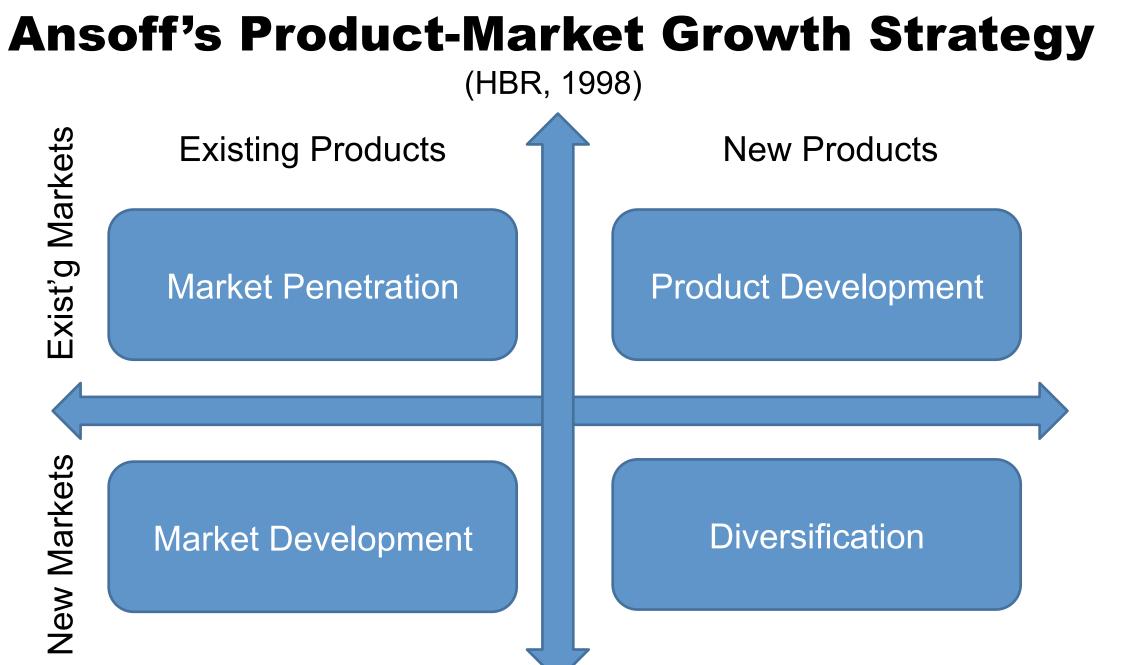
(Bozell and Petersen, 2012; de Jong et al., 2012; Erickson, 2012; EuBP, 2013)

he "food-			
product	Groups	Renewable chemicals	Companies
refineries ave been	Furans & derivatives	 Furfural Hydroxymethylfurfural (HMF) & Furan-2,5-dicaboxylic acid (FDCA) 	Avantium (Netherland)
ns et al.,	Biohydrocar	Iso-prene	Amyris
eedstock	bons	Biohydrocarbons (long chain)	Amyris, Dynamitic fuels, REII
se, 2013;		Para-xylene	GEVO, Anellotech, UOP, Virent
aterial by		Lactic acid /polylactide (PLA)	PURAC, NatureWorks, ECOSPAN,
., 2012).		Acrylic acid	OPXBIO/DOW Chemical, ADM/BASF
eseeking	Organic acids &	Succinic acid and derivatives (1,4- Butanediol (BDO))	BioAmber, Myriant, BASF/PURAC, Genomatica
ow-value	derivatives	3-Hydroxypropanoic acid (3-HPA)	Cargill
is a long		Levulinic aicd	Avantium, Segetis
efineries,		Acetic acid	ZeaChem
nological ozell and	<section-header></section-header>	Ethanol and derivatives (ethylene/ polyethylene)	 FKuR Plastics Corp. Braskem (Brazil)
n of this		Butanol/iso-butanol & derivatives (butadiene)	GEVO, Butamax, Cobalt
acing the		Glycerol and derivatives (ethylene glycol, propylene glycol, 1,3-propanediol (PDO))	Braskem (Brazil), Dupont
		Xylitol	Lenzing (Austria)
		Sorbitol	
		Polyethylene terephthalate (PET)	Toray, Virent, RTP Co.
	Bioplastic intermediate - polymers	Polyhydroxyalkanoates (PHAs)	Metabolix, Meredian, Newlight, Telles
		Polyamides (PA)	Arizona Chem., Arkema, Rennovia
strategy		Starch blends	Cereplast, Teknor Apex
		Cellulose fibers	Celanese Acetate, Eastman Chem., Innovia Films, Rotuba
		Lignin and derivatives	Weyerhaeuser

U.S. Renewable Chemicals Market Potential & Value added (Novent 2014)

Groups	Key renewable chemical (s) –	Corresponding technologies	Market potential (1000 metric tons)			Value added * (MM\$/yr)	
	application		2012	2017	2022	2017	2022
C2	Ethylene / MEG – PET bottle; PE - packaging	 Corn ethanol dehydration Biomass to ethylene 	0	0	1000	0	660
C3	Acrylic acid - diapers Dehydration of lactic acid						
	Polyether Polyols – automotive seating			100	300	210	630
C4	Lactic acid/ polylactic acid (PLA) - packaging 1,4 Butanediol (BDO) - solvents Butadiene – synthetic rubber	Fermentation of sugars	100	150	400	200	530
Aromatics	Para-xylene – PET bottle & textile fibers	 Gevo: isobutanol to PX Virent: Aqueous phase reforming process Cool Planet: agricultural waste pyrolysis 	<10	100	500	125	625
Specialty Oils	Vegetables oils – food, industrial applications	 Solazyme: Sugar-fed fermentation of genetically modified algae 	20	400	1000	240	600
	Tota	165	750	3200	775	3045	

* Value added: the difference between price of estimated renewable chemicals and the cost of raw materials.


- achieve economical viability; and To examine market strategies deployed by U.S. biorefineries; for example:
 - Porter's generic strategy
 - Ansoff's product-market growth strategy

Target/Marke Scope

Broad (Industry Wide

Narrow (Market segmer

Strategy	Sı
Low-cost leadership	Ac hie
	ch
Differentiation	Ac
	de
	fo
Focus	Hi
	st

Amidon, T. E., C. D. Wood, A. M. Shupe, et al. 2008. Biorefinery: conversion of woody biomass to chemicals, energy and materials. *Journal of Bio-based Materials* and Bioenergy 2(2):100-120. Babcock, B. A., S. Marette, D. Tréguer. 2011. Opportunity for profitable investments in cellulosic biofuels. *Energy Policy* 39: 714-719.

Bozell, J. J. and G. R. Petersen. 2010. Technology development for the production of biobased products from biorefinery carbohydrates – the US Department of Energy's "Top 10" revisited. Green Chem. 12(4): 539-554. de Jong, Ed, A. Higson, P. Walsh, et al. 2012. Product developments in the bio-based chemicals arena. Biofuels, Bioprod. Bioref. 6: 606-624. Erickson, B., J. E. Nelson and P. Winters. 2012. Perspective on opportunities in industrial biotechnology in renewable chemicals. *Biotechnology Journal* 7(2): 176-185.

EuBP. 2013. Bioplastics Facts and Figures. European Bioplastics. Available at: <u>http://en.european-bioplastics.org/wp-content/uploads/2013/publications/EuBP_FactsFigures_bioplastics_2013.pdf</u>. Fiorese, G., M. Catenacci, E. Verdolini, et al. 2013. Advanced biofuels: future perspectives from an expert elicitation survey. *Energy Policy* 56: 293-311. FitzPatrick, M., P. Champagne, M. F. Cunningham, et al. 2010. A biorefinery processing perspective: treatment of lignocellulosic materials for the production of value-added products. Bioresource Technology 101(23):8915-8922. HBR. 1998. Harvard Business Review on Strategies for Growth. Harvard Business School Press. Himmel, M. E., S. Ding, D. K. Johnson, et al. 2007. Biomass recalcitrance: engineering plants and enzymes for biofuels production. *Science* 315: 804-807. Nexant. 2014. Final report - renewable chemicals & materials opportunity assessment. Prepared for: U. S. Department of Agricultural. White Plains, NY: Nexant. Porter, M.E. 1985. Competitive Advantage. The Free Press. New York.

Sims, R., et al. 2008. From 1st-to 2nd-generation biofuel technologies: an overview of current industry and RD&D activities. Available at: https://www.iea.org/publications/freepublications/publication/2nd_Biofuel_Gen.pdf. Accessed 2 April 2014.

NARA is led by Washington State University and supported by the Agriculture and Food Research Initiative Competitive Grant No. 2011-68005-30416 from The USDA National Institute of Food and Agriculture.

Future Work

 To understand the drivers for renewable chemicals by U.S. biorefinery category; To identify potential renewable chemicals from U.S. biorefineries most likely to

Porter's Generic Strategy

(Porter, 1985)						
et	Cost Advantage Product/Service Low Cost Uniqueness					
e)	Cost Leadership Strategy	Differentiation Strategy				
nt)	Focus Strategy (Low Cost)	Focus Strategy (Differentiation)				

uccessful Firm's Internal Strength

Access to capital investment, skill in efficient manufacturing, igh level of engineering expertise, efficient distribution hannels

Access to leading scientific research, creative product evelopment team, strong sales team, corporate reputation or quality and innovation

ligh degree of customer loyalty, high product development trength to serve relatively narrow market segment

References

