

NARA Integrated Biorefinery Report Allan Gao¹, Tom Spink², and Shulin Chen¹ ¹Washington State University Department of Biological Systems Engineering | ²TSI

Introduction

The Aspen team has gathered information from various contributing teams (Feedstock, WY, Gevo, Coproducts) in order to assemble this information into a cohesive process model describing the NARA biorefinery.

- Process information (chemical input, reactions) developed using laboratory data - Aspen Plus used to create a process model to calculate mass and energy balance, and predict operating costs.
- Aspen Economic Analyzer used to estimate capital cost
- Data from our effort is summarized in an electronic file on Google Drive.

Prior work by our team involved creating department based models for each of the major operations in the NARA biorefinery (i.e. pretreatment, enzymatic hydrolysis). Over the course of the past year, this information has been assembled into an integrated model combining Aspen Plus v8.6 data with literature information as well as information from the Gevo team, as seen in the central figure to the right.

Methods

Assumptions: The development of an Aspen model requires accurate physico-chemical parameters for the chemicals and materials used. In several cases, the Aspen database did not contain chemical properties for the operations that we wished to model. In these cases, the NREL model was used as a base point for comparison. The NREL model gave specific chemical property parameters which were used in this model. In addition, some assumptions that were used in the NREL model were also incorporated into this model. For example:

- Vanillin was assumed to have similar chemical properties as lignin
- Xylan, arabinose, and galactose were assumed to have similar structures and properties, and were all modeled after xylan

Modeling: The process model was built using an iterative process, where Aspen output was checked after each rendition of the model for its closeness to predicted data.

Additionally, as more information became available from the pretreatment teams and co-products teams, the new data was added to the model, which allowed us to look at process benefits from changed parameters.

Models Developed From Literature

Several of the departments were not able to be modelled effectively in Aspen Plus. This included:

- Distribution
- Utilities
- Parts of the Boiler

For these operations, literature information was used to size and cost the equipment and estimate operating cost. Many of the utilities operations, including wastewater treatment, security and fencing, and process water were scaled up or down from the 2013 NREL biorefinery report.

The boiler operation was partially modelled in Aspen, with items such as the baghouse and vent scrubbers estimated outside of Aspen.

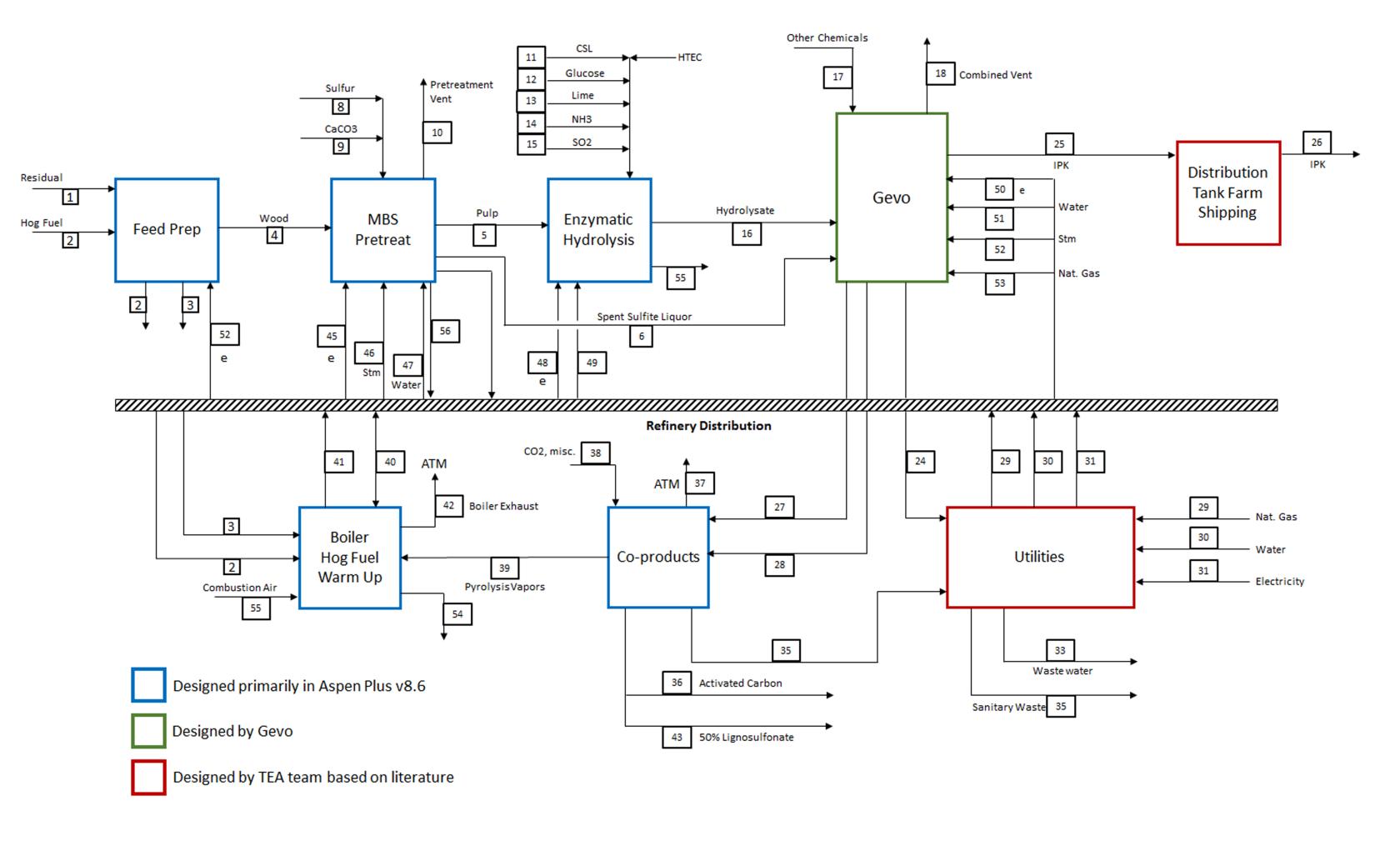


Figure: Nara integrated biorefinery model. Streams represent mass and energy balances calculated with Aspen and from literature analysis.

Department	Installed Capital Cost (\$MM)	Department	Operating Cost (\$MM/
Feedstock Handling	47.7	Feedstock Handling	67.09
Pretreatment	206.2	Pretreatment	10.1
Enzymatic Hydrolysis	76.8	Enzymatic Hydrolysis	27.9
Gevo Fermentation, Separation, and ATJ		Gevo Fermentation, Separation, and ATJ	36.4
Coproducts	123.9	Coproducts	0.1
Distribution	10	Distribution	4.4
Boiler	43.2	Boiler	35.8
Utilities	134.7	Utilities	17.4
Total	831.4	Total	199.19

Tables above: NARA biorefinery installed capital cost and operating costs

	Department	Net Steam Requirement (klbs/ hr)		Plar		
	Pretreatment	116.0	•	Stear		
	Enzymatic Hydrolysis	1.0		boiler		
	Gevo Fermentation & Upgrading	270.0		is pur		
	Coproducts	34.2	•	The b		
				and a for py		
	Total	421.2				
•	which provide steam to the	el, there are two other boilers e plant: the mixed fuel boiler ors from the activated carbon	•	There fines descr wood throu depar pretre		
•	 The sulfur boiler combusts elemental sulfur at high temperature to produce SO₂ for generation of calcium bisulfite used in pretreatment. 					

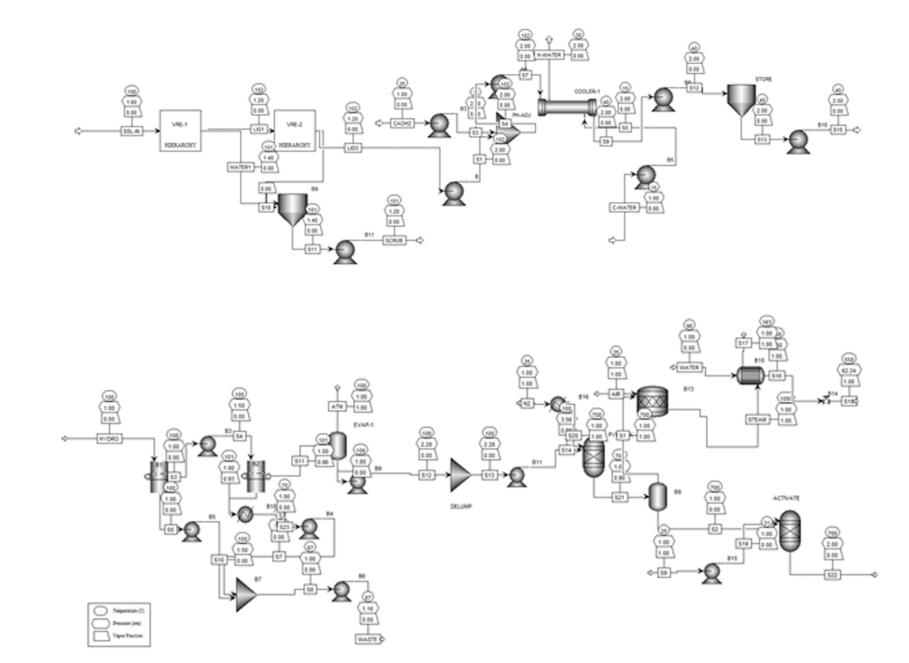
https://drive.google.com/a/nararenewables.org/folderview?id=0B5GOdPhOdioecUoxUHBRWFAwdnc&usp=sharing

ant Steam Requirement

am for the NARA biorefinery is provided by a set of ers. These boilers do not produce electricity, which urchased from the municipal grid.

boiler department consists of the hog fuel boiler also includes assessment for the mixed fuel boiler pyrolysis vapors in the co-products process.

re are two sources of fuel for the hog fuel boiler: and directly purchased hog fuel. Hog fuel is cribed as a wet mix of coarse chips of bark and d. The fines are forest residual chips that pass ugh the lower screen in the feedstock handling artment, and are too small to be used for reatment.


boiler needs to produce ~421,000 lbs/hr of steam neet the refinery steam needs.

Detailed Breakdown

Each department was broken down into five detailed documents, consisting of a description and diagram, input and output diagram, capital expenditure, operating expenditure, and atmospheric discharge.

- component masses that were modeled.

- not explicitly contained in the model.

Competitive Grant no. 2011-68005-30416 from the USDA National Institute of Food and Agriculture.

Description & Diagram: Contains a prose description of what the process entails, and the process model diagram created in Aspen Plus of the department.

2. Input and Output: A spreadsheet containing Aspen data for mass and energy balance. This spreadsheet shows steam and water flows as well as the individual

Capital expenditure: Installed equipment cost for the department.

Operating expenditure: Cost of chemicals and energy for the department.

Atmospheric discharge: An estimate of compounds discharged to water or air that are

Figure: Diagram of the coproducts department (top: SSL bottom: activated carbon

c	02, misc.	38	ATM A	тм								
			†	<u> </u>								
			37	70								
	_	+			27							
57				•	27							
		→										
Air 58		Co-	oroducts									
			Jounces		28							
72		→										
	39											
L					35							
Pyrolys	sis Vapors											
					71							
						→						
			36	Activated Ca	rbon							
						->						
						•						
			43	50% Lignosu	lfonate	-						
				-								
	ort tons/h											
27	28		36	37	38	39	43	57	58	70	71	72
òulfite .iquor	Fermenta tion Residual Stillage	Sulfite Liquor	Activate d Carbon	Pyrolysis Boiler Vent	CO2 & N2	Pyrolysis Vapors	Lignosulf onate	Electricit y	Steam	Fired Heater Vent	FRS Filtrate	Natural Gas
260.38	444.38			56.72	-	0.48	46.72	-	-		408.87	-
-	1.24	-	-	-	-			-	-		1.08	
-	1.24	-		-	-		-				1.08	-
-			-					-	-			
-	1.24	-	-	-	-	-	-	-	-	-	1.08	-
-	1.24	-	-	-	-	-	-	-	-	-	1.08	-
-	1.24	-	-	-	-	-	-	-	-	-	1.08	-
-	0.90	-	-	-	-	-	-	-	-	-	-	-
0.01	18.52	-	-	-	-	-	18.52	-	-	-	-	-
9.56	1.46	-	-	-	-	-	1.46	-	-	-	1.25	-
-	3.18	-	-	-	-	-	-	-	-	-	-	-
0.434	0.93	0.0001	-	-	-	-	0.93	-	-	-	-	-
0.434	0.93	0.0001	-	-	-	-	0.93	-	-	-	-	-
0.434	0.93	0.0001	-	-	-	-	0.93	-	-	-	-	-
0.434				-	-	-	0.93		-	-	-	-
0.434	0.93			-	-	-	0.93		-		-	-
1.36			-	-	-	-	3.34			-	-	-
1.50	5.54	-		-	-	-	5.54		-			
								-	-	-	-	-
0.91	0.25			-	-	-	0.25		-	-	-	-
0.09	0.15			-	-	-	0.15		-	-	-	-
8.41	0.77	-	-	-	-	-	0.77	-	-	-	2.508	-
-	-	-	-	-	-	-	-	-	34.2	-	-	-
-	-	-	-	-	-	-	-	10.65	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	58.4
0.85	2.43	-	-	-	-	-	2.43	-	-	-	-	-
-	-	-	-	28.26	6.0	2.61	-	-	-	2.61	-	-
-	-	-	-	3.23		-	-	-	-	-	-	-
-	-	-	-	6.85		-	-	-	-	-	-	-
-				-	-	9.96		-	-		-	-
-	-	-	-	-	24.0	1.01	-	-	-	-	-	-
	-	-		-	-	-	-	-	-		-	-
-		-	-	-	-	-	-	-	-	-	-	-
	-											
-										-	-	-
-	-	-	-	-	-	17.84	-	-	-	-	-	
-		-			-	17.84	-	-	-	-		
-		-	- 7.493		-	-	-	-	-	-	-	-
-	-							-				

Figure: Input Output diagram of the coproducts department

