

NARA Supply Chain Emissions: Impacts on Air Quality in the Pacific Northwest Current Status and Future Work

Vikram Ravi^{*} and Brian K. Lamb

Washington State University | Department of Civil and Environmental Engineering | Laboratory for Atmospheric Research | *Contact: vikram.ravi@wsu.edu

Introduction

As a forest management practice, and to reduce potential catastrophic forest fires, the residue from harvesting activities is conventionally burned for removal. Under the NARA program, this residue will be harvested for use as a feedstock which will reduce the need for biomass burning and the resulting air pollutant emissions. At the same time, emissions from the supply chain and, specifically, the biorefinery, will result in new air pollutant sources. Progress on the assessment of the air quality impacts of the NARA supply chain are presented. First, the impacts of the prescribed fires on PM_{25} , and ozone are presented. We also show the improvements in model performance when prescribed fire emissions are included. The regional air quality modeling system, called AIRPACT-4 (based on WRF, SMOKE, CMAQ), is used for this analysis. Second, initial compilation of the emissions from a biorefinery are described and an approach for future analyses is presented.

Objectives

- To assess the environmental benefits associated with biomass harvesting (i.e. prevention of biomass burning) for biofuel feedstock
- Assessing model performance improvement when prescribed fire emissions are included
- Quantifying and estimating emissions from the NARA biorefinery

Methods

- Prescribed fire emissions for the model domain were extracted from the National Fire Emission Inventory (NFEI) 2011 available from the US EPA.
- An analysis of the fire emission data shows that emissions peak during the months of October and November (Figure 1).
- Model simulations were completed for the period 10 October 15 November, 2011 for three different emission scenarios:
- 100% Fire (with fire) Case: includes all the fire emissions as per NFEI 2011
- **30% Fire Case:** includes all the fire sources as per NFEI 2011, but all fire emissions (& heat flux) uniformly reduced by 70%
- **No Fire Case:** none of the fires from NFEI 2011 were included
- Performance metrics including the Mean Fractional Bias (MFB) and Mean Fractional Error (MFE) along with Mean Bias (MB) and Mean Error (ME) are used for evaluation of the model performance.

Figure 1: Prescribed fire emissions (bars) and acres burend (dots) for the AIRPACT-4 domain as per NFEI 2011.

Conclusions

- Most prescribed fire emissions occur during October and November, with Oregon emitting the most among all the PNW states (within the AIRPACT-4 domain).
- Model performance is within EPA criteria for elemental carbon, nitrate, sulfate, and ammonium aerosols for all sites. Significant improvement in model performance is seen for total PM_{2.5} and organic carbon when compared against observation data from IMPROVE sites.
- AIRPACT-4 simulations show that the impact on O_3 is negligible for the period of simulation, with some large prescribed fires contributing 0.5ppb - 1ppb.
- Under a scenario of 70% decrease in fire emissions (for biomass harvesting for biofuels), we could see significant decrease in 37-day averaged PM_{2.5} concentration. This decrease is mostly for areas in Oregon, where most fire emissions take place. This is an indication of potential benefits of biomass harvesting for a biofuel industry.
- **Planned work** Emissions from various NARA processes have been developed and as a next step we will undertake the simulation of the entire supply chain under two different scenarios as described above for an extended period of time and analyzing different scenarios to assess the impact of NARA supply chain on the air quality

Northwest Advanced Renewables Alliance

References

- Acknowledgement

We would like to thank Farren H. Thorpe at Washington Department of Ecology (DoE) for his help with AIRPACT-4 model and Ranil Dhammapal (also at DoE) for providing observational data for IMPROVE sites.

• Achtemeier, G. L., Goodrick, S. A., Liu, Y., Garcia-Menendez, F., Hu, Y., & Odman, M. T. (2011). Modeling smoke plume-rise and dispersion from southern United States prescribed burns with Daysmoke. Atmosphere, 2(3), 358-388. • Boylan, J. W., & Russell, A. G. (2006). PM and light extinction model performance metrics, goals, and criteria for three-dimensional air quality models. Atmospheric Environment, 40(26), 4946-4959. • Emmons, L. K., et al., Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4), (2010) Geosci. Model Dev., 3, 43-67. • Byun D. W. and Ching J.K.S. (editors). "Science Algorithms of the EPA Models-3 Community Multiscale Air Quality Modelling (CMAQ) System". Accessed from USEPA website: http://www.epa.gov/amad/CMAQ/CMAQdocumentation.html

> NARA is led by Washington State University and supported by Agriculture and Food Research Initiative Competitive Grant from the USDA National Institute of Food and Agriculture

