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As a forest management practice, and to reduce potential catastrophic forest fires, the residue from harvesting activities is o7, Mre Criteria [, B Criteri MFB Critera Figure 2: (clockwise from top left) Model performance evaluation for
conventionally burned for removal. Under the NARA program, this residue will be harvested for use as a feedstock which will T . P ool N\ e S 100 o SN s 22O total PM, . mass, Organic Carbon (OC), Sulfate ion, Ammonium ion,
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and, specifically, the biorefinery, will result in new air pollutant sources. Progress on the assessment of the air quality impacts of 5 Ta omil i - S S : :

p y y p g quality Imp 2 | et | I S S S ; from 26 IMPROVE network sites in WA, OR, ID, MT, & CA. MFB for
the NARA supply chain are presented. First, the impacts of the prescribed fires on PM, ., and ozone are presented. We also el LT N T T ] I S e ool o _

. . . . e . . . . . % % % % % % % ' % % each species is compared against “goals” (best accuracy a model can
show the improvements in model performance when prescribed fire emissions are included. The regional air quality modeling e
system, called AIRPACT-4 (based on WRF, SMOKE, CMAQ) , is used for this analysis. Second, initial compilation of the A e R — e - ool __________________ 200 achieve) and “criteria” (acceptable level of accuracy). Inclusion of
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emissions from a biorefinery are described and an approach for future analyses is presented.
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prescribed fire emissions results in significant improvement of model
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« Assessing model performance improvement when prescribed fire emissions are included

criteria for PM, ¢ in “with fire” case compared to “no fire” case where 8
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« Quantifying and estimating emissions from the NARA biorefinery

Methods

« Prescribed fire emissions for the model domain were extracted from the National Fire Emission Inventory (NFEI) 2011

sites are outside criteria. For NO-; and EC, an increasing trend in MFB
IS observed for almost all sites. MFB for EC, NO-;, NH*,, and SO,*

~200} -200} ~200} -

-0.2 0.0 0.2 0.4 0.6 0.8 1.0
Mean Concentration (ug/m")

available from the US EPA. 0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0

Mean Concentration (ug/m’) Mean Concentration (ug/m")

are within criteria for almost all the sites.

« An analysis of the fire emission data shows that emissions peak during the months of October and November (Figurel).
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« Model simulations were completed for the period 10 October — 15 November, 2011 for three different emission scenarios: g conc. between 10 Oct - 15 No 9 ( ° ) 7 G (100% Fire - 30% Fire)
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« No Fire Case: none of the fires from NFEI 2011 were included s be much higher than 12 pg/m3 (Annual . uniformly reduced by 70%.
« Performance metrics including the Mean Fractional Bias (MFB) and Mean Fractional Error (MFE) along with Mean Bias 3 National Ambient Air Quality Standard, - 10 Results for only those
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« Under a scenario of 70% decrease in fire emissions (for biomass harvesting for biofuels), we could see significant decrease Voes database
in 37-day averaged PM, - concentration. This decrease is mostly for areas in Oregon, where most fire emissions take place.
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undertake the simulation of the entire supply chain under two different scenarios as described above for an extended period

of time and analyzing different scenarios to assess the impact of NARA supply chain on the air quality
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