

Partially depolymerized enzymolysis lignin: Preparation, **Characterization and Application** Junna Xin, Michael P. Wolcott, Jinwen Zhang Composite Materials and Engineering Center, Washington State University, Pullman, WA 99164, USA

(jwzhang@wsu.edu)

power in pulp process;

4. The chemical structure of lignin be broken into smaller molecular units.

2. Partial depolymerization

Table 1. Hydroxyl values of partial depolymerized lignins (PDL)

Figure 7. polyurethane foams based on PDL/PCL/TDI (a: 30% PDL; b: 20% PDL; c:

Curing agents

Dynamic mechanical analysis (DMA)

Table 2. Thermal properties of cured PDL-epoxy resin and PDL epoxy asphalt

Systems	DMA		
	T _g /°C	G' (Gpa, 25 °C)	
PDL-62(A)-epoxy/TMA	89.0	0.61	
PDL-DA-epoxy/TMA	75.7	0.35	
PDL-62(A)-epoxy/ESO/DPMA	46.1	0.47	
PDL-DA-epoxy/ESO/DPMA	1.2	0.20	
Neat asphalt	-12.8	_	
15wt% PDL-62A-epoxy asphalt	25.0	0.72	
15wt% PDL-DA-epoxy asphalt	25.6	0.10	
30wt% PDL-DA-epoxy asphalt	23.8	0.42	

Figure 1: Process diagram for hydrogenolysis reaction

Process 1: partial hydrogenolysis ^[1,2]

- Mild conditions: 120-250 °C, H₂ pressure <2.0 MPa;
- Raney Ni catalyst: high active and easy to separate;
- Selective hydrogenolysis: cleavage C-O rather than C-C. 3.

Process 2: Base-catalyzed depolymerization (BCD)

- Temperature 150-250 °C;
- 1N NaOH solution.

Figure 2: Reactor and

Figure 3: Freeze-drying

Structure	δ ³¹ Ρ NMR	OH value (mmol/g)		
	(ppm)	160 °C	180 °C	200 °C
Aliphatic OH	145.5-150.0	0.81	0.71	0.66
Aromatic OH	136.6-144.7	2.40	2.68	3.22
Carboxylic acid OH	133.6-136.6	0.37	0.44	0.50
Total		3.58	3.83	4.38

Applications

Solubility of lignin before and after hydrogenolysis

Adhesives

4. Conclusions

- Partial depolymerization of enzymolysis lignin (PDL) was effectively performed under mild conditions.
- The obtained PDL demonstrated low molecular weight, high hydroxyl value and good solubility in organic solvent and were further converted into epoxies and polyurethanes.
- Green adhesives based on PDL and SPI exhibited excellent performance in terms of strength and water resistance.

