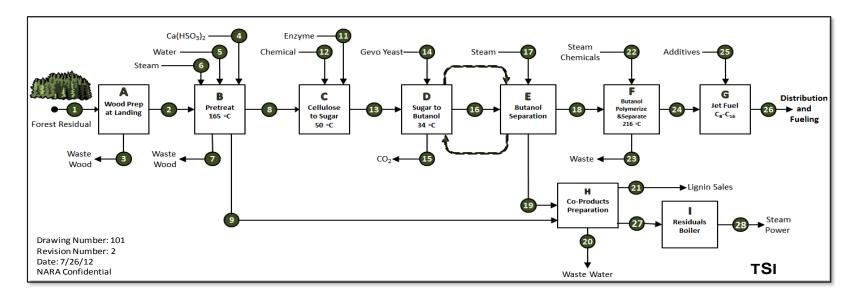


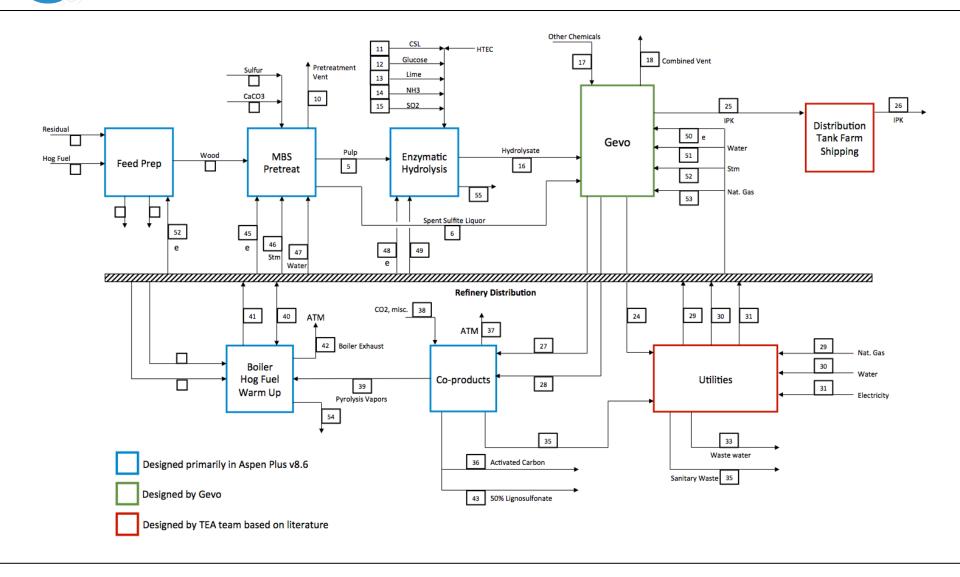
Softwood to Jet Fuel Techno-Economics for an Integrated Greenfield Biorefinery

NARA Annual Meeting

Gevan Marrs and Tom Spink September 2015

Northwest Advanced Renewables Alliance


- NARA has assembled and refined expertise in conversion technology for converting PNW softwoods into multiple products. The economics of a greenfield, full scale integrated biorefinery have been estimated, and sensitivity analyses performed.
 - Conversion processes and yields have been developed based upon laboratory tests.
 - Energy and mass balances have been calculated with ASPEN modeling.
 - Capex and Opex have been estimated from best available sources.
 - All of these are incorporated into a TEA model.

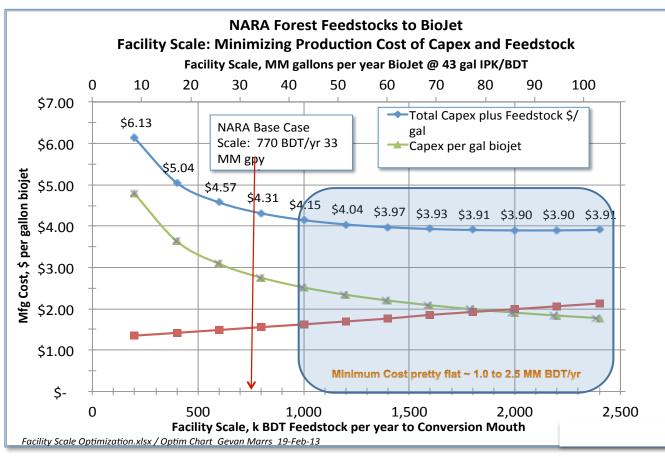

NARA Process Simplified Overview

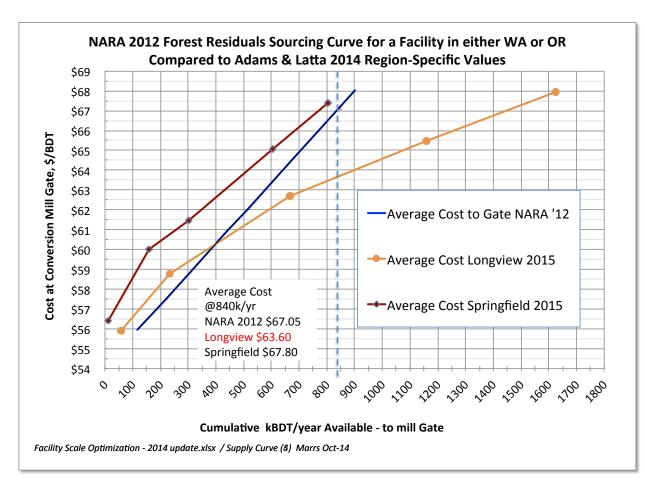
- Forest Harvest Residuals are processed in a biorefinery to produce 3 products:
 - Cellulosic sugars are fermented to IBA, this converted to isoparaffinic kerosene (IPK, bio-jet fuel)
 - Hemicelluloses and soluble lignin are sold as Lignosulfonates
 - Insoluble lignin and fermentation residuals are converted to activated carbon.

ASPEN Process Flow Overview

0

- Forest Harvest Residuals are an abundant, underutilized, renewable source available at large scale.
 - tree tops, branches, broken logs and chunks




- Feedstock cost to a central point increase as facility scale increases, but economy of scale of the plant decreases cost per unit consumed.
 - This tradeoff leads to a facility scale target of about 770,000
 BDT/year feedstock through conversion, or 2,200 tons per day.

- Forest Harvest residuals are assumed to be harvested with the following costs:
 - Stumpage, Loading, Grinding, Hauling to millsite

2014 estimates for a target location (Longview, WA)

840,000 BDT through the gate at average of\$63.60 / BDT

NARA

- Feedstock is pretreated to allow enzymatic hydrolysis of cellulosic sugars to simpler sugars.
- Sugars are fermented to iso-butanol (IBA).
- IBA is polymerized and dehydrated to Isoparaffinic Kerosene (IPK).
- IPK can then be blended 50:50 with petro-jet to make aviation fuel.
- Facility would produce 36 MM gal IPK / year
- Assumed selling price of \$3.09 / gal IPK
- Carbon Credit premium for renewable bio-fuel (via RINs) is another \$2.12 / gal IPK.
- Annual revenue from IPK is \$188 MM.

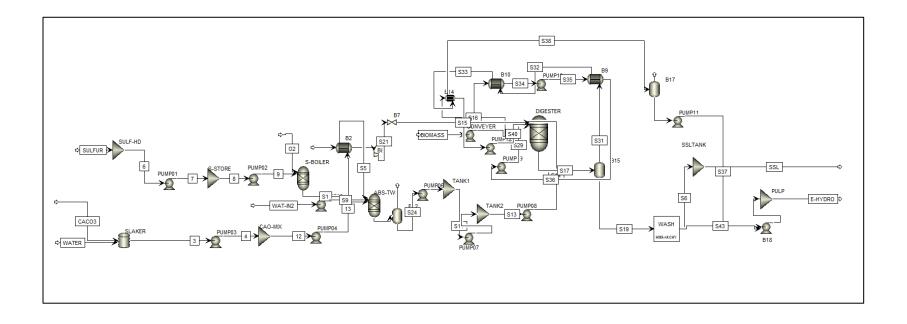
Process Overview - Lignosulfonates

- Mild bisulfite pretreatment of feedstock dissolves some lignin and many hemicelluloses.
- This solution of lignin and sugars is fermented to remove sugars, then (with some process chemicals), has an established market as a sugar-free lignosulfonate.
- NARA facility would produce 196 k dry tons of sugar-free lignosulfonates (LS).
- Assumed selling price is \$200 / dry ton
- Annual revenue from LS is \$39 MM/year.

Process Overview – Activated Carbon

- Solids from feedstock remain after fermentation of sugars (FRS), consisting of mostly lignin and spent yeast.
- FRS can be pyrolized and activated to produce Activated Carbon (AC).
- AC has a potential market as a material to remove mercury from power plant flue gas.
- NARA facility would produce 66k dry tons / year
- Assumed selling price of \$1,500 per dry ton
- Annual revenue would be \$99 MM.

Process for Techno-Economic Analysis


- Production processes defined by years of laboratory to pilot scale work by NARA participants.
- Reactions and product yields incorporated into ASPEN mass and energy balance model to quantify flows at scale.
- Capital cost estimates for full facility pulled from available sources and scaled per ASPEN results.
- Operating costs were derived from ASPEN flow quantities and literature costs (chemicals, power, labor, etc.)
- All these pulled together in DCF-ROI analysis based upon NREL corn-stover to ethanol TEA model.

ASPEN Model Example Department

Mild Bi-Sulfite Pretreatment of forest residuals
 Process flow and equipment layout

ASPEN model mass and energy

			Sulfur		Pretreat	nent							
					Vent	nem							
			CaCO3										
		-		→	10								
						Pulp							
				¥		5							
							→						
		Wood		MDC			→						
		wood	→	MBS			Spent Sulfite	Liquor					
				Pretreat	5	7	_						
		_	→										
	60			*		59							
							-						
			45										
			e	46									
				Stm 47									
				Water									
		ort tons/hou											
Component	4	5	8	9		6	45	46	47	56	57	59	e
	Forest	Pretreated		Calcium	Pretreatment Combined	Spent Sulfite				Cooling Water	Cooling Water		1
	Residuals	Pulp	Sulfur	Carbonate	Vent	Liquor	Electricity	Steam In	Process Water		Out	Steam Out	Caustic In
Water	61.11	142.55	-	-	1.253	247.797	-	-	321.51	3030	3030	-	-
Glucan	37.34	35.41	-	-	-	-	-	-	-	-	-	-	-
Xylan	4.90	2.55	-	-	-	-	-	-	-	-	-	-	-
Arabinan	1.12	0.70	-	-	-	-	-	-	-	-	-	-	-
Galactan	2.67	1.41	-	-	-	-	-	-	-	-	-	-	-
Mannan	10.50	5.65	-	-	-	-	-	-	-	-	-	-	-
Ash	0.43	0.43	-	-	-	-	-	-	-	-	-	-	-
Insoluble Lignin	25.89	18.48	-	-	-	-	-	-	-	-	-	-	-
Soluble Lignin	0.41	1.65	-	-	-	10.902	-	-	-	-	-	-	-
Bark	3.18	3.18	-	-	-	-	-	-	-	-	-	-	-
Extractives	5.22	0.65	-	-	-	4.56	-	-	-	-	-	-	-
Glucose	-	0.26	-	-	-	1.79	-	-	-	-	-	-	-
Xylose	-	0.32	-	-	-	2.26	-	-	-	-	-	-	-
Arabinose	-	0.06	-	-	-	0.39	-	-	-	-	-	-	-
Galactose	-	0.17	-	-	-	1.21	-	-	-	-	-	-	-
Mannose	-	0.66	-	-	-	4.64	-	-	-	-	-	-	-
												ļ'	L
CaCO ₃	-	-	-	3.25	-	-	-	-	-	-	-	-	-
Sulfur	-	-	3.30	-	-	-	-	-	-	-	-	-	-
Bisulfite	-	0.19	-	-	-	1.37	-	-	-	-	-	-	-
SO2	-	-	-	-	0.031	-	-	-	-	-	-	-	-
Steam (klb)	-	-	-	-	-	-	-	158.6	-	-	-	42.6	-
Elec. (MWhr)	-	-	-	-	-	-	1.50	-	-	-	-	-	-
Acetic Acid	-	0.27	-	-	-	-	-	-	-	-	-	-	-
Furfural	-	0.15	-	-	-	-	-	-	-	-	-	-	-
CO2	-	0.02	-	-	0.782	-	-	-	-	-	-	-	-
NaOH	-	-	-	-	0.125	-	-	-	-	-	-	-	0.12
<u> </u>													
Subtotal BDT	91.7	72.2	3.3	3.3	-	27.1	-	-	-	-	-	-	-
BDT/yr	769913.8	606564.0	27720.0	27300.0	-	227824.8	-	-	-	-	-	-	-
	1	1				1	1	1	1	1	1	1	1
Total	152.8	214.8	3.3	3.3	-	274.9	-	-	-	-	-	-	-

Mild Bi-sulfite Pretreatment of forest residuals

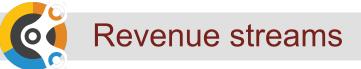
 \mathbf{O}

 Based upon defined equipment needs and size per ASPEN modeling, estimates pulled from best available sources.

Process Area		Purchased Cost, MM\$	Inst	alled Cost, MM\$
Feedstock handling			\$	47.7
Pretreatment			\$	206.2
Enzymatic Hydrolysis			\$	76.8
Fermentation, Separation, Alcohol-to-Jet			\$	188.9
Lignin Co-products			\$	123.9
IPK Product Storage and Distribution			\$	10.0
Multi-fuel Boiler			\$	43.2
Utilities			\$	134.7
Totals			* \$	831.4
Warehouse	% of ISBL	4.0%	\$	20.8
Site development (Inlcuded in ASPEN Utilities block)	% of ISBL	0.0%	\$	-
Additional piping (included in other blocks)	% of ISBL	0.0%	\$	-
Total Direct Costs (TDC)		4.0%	\$	852.2
Prorateable expenses	10% of TDC	10%	\$	85.2
Field expenses	10% of TDC	10%	\$	85.2
Home office & construction fee	20% of TDC	20%	\$	170.4
Project contingency	10% of TDC	10%	\$	85.2
Other costs (start-up, permits, etc.)	10% of TDC	10%	\$	85.2
Total Indirect Costs	% of TDC	60%	\$	511.3

Indirect costs included per NREL assumptions.

Total Capital Investment = \$1,363 MM



• Based upon quantities from ASPEN model, best available prices, opex by department estimated.

Manufacturing Costs (million \$ per y	ear)
Feedstock + Handling	\$70.5
Pretreatment Opex	\$10.1
Enzymatic Hydrolysis	\$27.9
Fermentation, Separation & Alcohol-to-Jet	\$36.4
IPK Product Storage and Distribution	\$0.1
Power Boiler	\$4.4
Lignin Co-products	\$35.8
Utilities	\$17.4
Fixed Costs (Labor, Prop Tax, Insurance, Maint.)	\$78.3
Total Manufacturing Costs	\$280.89

- Quantities and assumed selling price
- Co-products contribute almost the same amount to revenue as does renewable bio-jet.

Case 13.2 Integrated Faci	Case 13.2 Integrated Facility producing IPK, Lignosulfonates, and Activated Carbon									
Annual Revenue										
Product	Product Annual Product Units (millions) Revenue \$/Unit Total Annual Revenue									
Iso-Paraffinic Kerosene - IPK	36.2	gallons	<mark>\$ 3.09</mark>	\$ 111.71						
Cellulosic RINs	61.4	C-RINS	\$ 1.25	\$ 76.80						
Lignosulfonates	196,224	Dry tons	\$ 200	\$ 39.24						
Activated Carbon	66,192	Dry tons	\$ 1,500	\$ 99.29						
Total Annual Revenue (million \$ per year)				\$ 327.04						

- 30-year project life, 100% equity funding, 10% cost of capital, 8-year depreciation.
- Bottom line results Greenfield IBR: 0.1% IRR

DCFROR Worksheet - all \$ MM														
Year	Annual Averages	-2	-1	0	1	2	3	4	5	6	7	8	9	10
Fixed Capital Investment		\$109	\$818	\$436										
Land		\$8												
Working Capital				\$68										
Loan Payment					\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Loan Interest Payment		\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Loan Outstanding Principal		\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
IPK Sales	\$111.71				\$111.71	\$111.71	\$111.71	\$111.71	\$111.71	\$111.71	\$111.71	\$111.71	\$111.71	\$111.71
Cellulosic RINs	\$76.80				\$76.80	\$76.80	\$76.80	\$76.80	\$76.80	\$76.80	\$76.80	\$76.80		\$76.80
Octane	\$0.00				\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
T 12:00:00 AM	\$0.00				\$0.00 🗖	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Lignosulfonates	\$39.24				\$39.24	\$39.24	\$39.24	\$39.24	\$39.24	\$39.24	\$39.24	\$39.24	\$39.24	\$39.24
Activated Carbon	\$99.29				\$99.29	\$99.29	\$99.29	\$99.29	\$99.29	\$99.29	\$99.29	\$99.29		\$99.29
Total Annual Sales	\$327.04		Total	Annual Sales	\$327.04	\$327.04	\$327.04	\$327.04	\$327.04	\$327.04	\$327.04	\$327.04	\$327.04	\$327.04
Annual Manufacturing Cost														
Feedstock					\$70.45	\$70.45	\$70.45	\$70.45	\$70.45	\$70.45	\$70.45	\$70.45		\$70.45
Baghouse Bags					\$0.09	\$0.09	\$0.09	\$0.09	\$0.09	\$0.09	\$0.09	\$0.09	\$0.09	\$0.09
Other Variable Costs					\$132.08	\$132.08	\$132.08	\$132.08	\$132.08	\$132.08	\$132.08	\$132.08	\$132.08	\$132.08
Fixed Operating Costs					\$78.27	\$78.27	\$78.27	\$78.27	\$78.27	\$78.27	\$78.27	\$78.27	\$78.27	\$78.27
Total Product Cost	\$280.89				\$280.89	\$280.89	\$280.89	\$280.89	\$280.89	\$280.89	\$280.89	\$280.89	\$280.89	\$280.89
Annual Depreciation														
General Plant Writedown					14%	24.49%	17.49%	12.49%	8.93%	8.92%	8.93%	4.46%		
Depreciation Charge	\$44.0		Depre	ciation Charge	\$188.67	\$323.34	\$230.92	\$164.90	\$117.90	\$117.77	\$117.90	\$58.89	\$0	\$0
Remaining Value					\$1,132	\$808	\$577	\$412	\$295	\$177	\$59	\$0		
Steam Plant Writedown					3.75%	7.22%	6.68%	6.18%	5.71%	5.29%	4.89%	4.52%	4.46%	4.46%
Depreciation Charge	\$1.44				\$1.62	\$3.12	\$2.88	\$2.67	\$2.47	\$2.28	\$2.11	\$1.95	\$1.93	\$1.93
Remaining Value					\$42	\$38	\$36	\$33	\$30	\$28	\$26	\$24	\$22	\$20
Total Depreciation					\$190.29	\$326.46	\$233.80	\$167.57	\$120.37	\$120.05	\$120.01	\$60.84	\$1.93	\$1.93
Net Revenue	\$0.71			Net Revenue	(\$144.13)	(\$280.30)	(\$187.65)	(\$121.42)	(\$74.21)	(\$73.90)	(\$73.86)	(\$14.68)	\$44.23	\$44.23
Losses Forward			L	osses Forward		(\$144.13)	(\$424.44)	(\$612.08)	(\$733.50)	(\$807.72)	(\$881.61)	(\$955.47)	(\$970.16)	(\$925.93)
Taxable Income	(\$534.84)		٦	axable Income	(\$144.13)	(\$424.44)	(\$612.08)	(\$733.50)	(\$807.72)	(\$881.61)	(\$955.47)	(\$970.16)	(\$925.93)	(\$881.70)
Income Tax	\$0.00	0.00%		Income Tax	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Annual Cash Income	\$46.15	\$ 117.08	\$818	\$504	\$46	\$46	\$46	\$46	\$46	\$46	\$46	\$46	\$46	\$46
Discount Factor	10.000%	1.2100	1.1000	1.0000	0.9091	0.8264	0.7513	0.6830	0.6209	0.5645	0.5132	0.4665	0.4241	0.3855
Annual Present Value	\$435				\$42	\$38	\$35	\$32	\$29	\$26	\$24	\$22	\$20	\$18
Total Capital Investment + Interest	*	\$142	\$900	\$504	•						v = .			
Net Present Worth			÷300	-\$1,106.5742										
Internal Rate of Return	0.09%	\$ (117.08)	\$ (818.08)		\$ 46.15	\$ 46.15	\$ 46.15	\$ 46.15	\$ 46.15	\$ 46.15	\$ 46.15	\$ 46.15	\$ 46.15	\$ 46.15
		÷ (miles)	+ (210.00)	(30 ii 10)	- 10.10	- 10.10	+ 10.10	+ 10.10	÷ 10.10	÷ 10.10	+ 10.10	+ 10.10	+ 10.10	÷ 10.10

- High capital costs, low annual revenue compared to annual operating costs.
 - That is, the process is complex, the yields of products are (relatively) low, and the market value of many are basically commodity pricing.

									Unit	Value
									on W	Veight
					Tota	al Revenue,			Basis	s,
NARA Revenue V13	Amount	Units	Price	e per uni	\$	fMM/yr	Tons/yr	Yield on Wood	\$/BD	т
Iso-Paraffinic Kerosene - IPK	36.2	gallons	\$	3.09	\$	111.71	112,980	13%	\$	989
Cellulosic RINs	61.4	C-RINS	\$	1.25	\$	76.80	NA		\$	680
Total for celllosic IPK									\$	1,669
Lignosulfonates	196,224	Dry tons	\$	200	\$	39.24	196,224	23%	\$	200
Activated Carbon	66,192	Dry tons	\$	1,500	\$	99.29	66,192	8%	\$	1,500
Total Annual Revenue (million \$ per year)					\$	327.04		44%		

- Due to depreciation and tax impacts, effect of Capex not intuitively obvious.
- Assume that Capex is reduced (cut in half) for usable departments by re-purposing a pulp mill.

	Capi	tal Costs, mill	ion \$
Unit Operation	Greenfield	Repupose	Savings
Feedstock handling	\$48	\$24	
Pretreatment	\$206	\$103	
Enzymatic Hydrolysis	\$77	\$77	
Fermentation, Separation & Alcohe	\$189	\$189	
Lignin Co-products	\$124	\$124	
IPK Product Storage and Distribut	\$10	\$10	
Multi-fuel Boiler	\$43	\$22	
Utilities	\$135	\$67	
Total Installed Equipment Cost	\$831	\$615	\$216
Added Direct + Indirect Costs	\$608	\$453	
(% of TCI)	42%	42%	
Total Capital Investment (TCI)	\$1,439.6	\$1,068.4	\$371
IRR	0.1%	1.4%	

Cutting Capex by half for Feedstock handling, Pretreatment, Boiler and Utilities only increases IRR to 1.4%

Essentially the issue is that Revenue is not large enough compared to Operating costs.

Need to make more, highly valued products in a simpler process...

What would it take to increase IRR?

• Can increase Revenue, decrease Opex, reduce Capex, or some combination of these three factors.

Aribtrary	Aribtrary results needed to get high IRR from NARA IBR								
Cut Opex	(by 1/2 o	r 3/4							
Capex		Opex		Reve	nue	IRR			
\$	1,441	\$	281	\$	327	0.1%			
\$	1,441	\$	140	\$	327	9.4%			
\$	1,441	\$	70	\$	327	12.8%			
Increase	Increase Revenue by 50% or 100%								
\$	1,441	\$	281	\$	327	0.1%			
\$	1,441	\$	281	\$	491	10.6%			
\$	1,441	\$	281	\$	654	17.8%			
Drop Ca	pex by 25	% or 50%	6						
\$	1,441	\$	281	\$	327	0.1%			
\$	1,081	\$	281	\$	327	1.4%			
\$	721	\$	281	\$	327	3.6%			

• With the base case Revenue only slightly higher than Opex, reducing Capex does not have a big influence.

What does it take to get to 25% IRR?

- One change at a time:
 - Opex cannot be reduced enough to get to 25%
 - Revenue would have to go up by 2.6 times (\$850 MM/ yr)
 - Capex would have to decline by 93% (\$104 MM)

Aribtrary result	Aribtrary results needed to get high IRR from NARA IBR							
Cut Opex by 1/2	2 or 3/4							
Сарех	Opex		Reve	enue	IRR			
\$ 1,44	1 \$	281	\$	327	0.1%			
\$ 1,44	1 \$	140	\$	327	9.4%			
\$ 1,44	1 \$	70	\$	327	12.8%			
\$ 1,44	1	\$0	\$	327	15.9%			
Increase Rever	ue by 50	0% or 100%						
\$ 1,44	1 \$	281	\$	327	0.1%			
\$ 1,44	1 \$	281	\$	491	10.6%			
\$ 1,44	1 \$	281	\$	654	17.8%			
\$ 1,44	1 \$	281	\$	850	25.0%			
Drop Capex by	25% or !	50%						
\$ 1,44	1 \$	281	\$	327	0.1%			
\$ 1,08	1\$	281	\$	327	1.4%			
\$ 72	1\$	281	\$	327	3.6%			
<mark>\$ 10</mark>	<mark>4</mark> \$	281	\$	327	25.0%			

None of these, by themselves, seems very plausible.

Examine combinations.

• With semi-realistic simultaneous conceivable improvements, a high IRR *could* be achieved.

Combinations Getting to high IRR										
Cut Capex and Opex by 25% each, Increase Revenue by 50%										
Сарех	Opex Revenue IRR									
\$ 721	\$	\$ 211 \$ 491 17.7%								
Cut Capex and Opex by 25% each, Increase Revenue by 100%										
\$ 721	\$	\$ 211 \$ 654 25.7%								

- Vast reductions in Capex and Opex alone are not sufficient to get high IRR.
- Need substantial Revenue increase in addition to plausible reductions in Capex and Opex.
 - IPK yield and market price, even with renewable fuels premium, has little room for measurable improvement.
 - Doubtful that quantities or market prices for LS and AC can change appreciably,
- Therefore, one needs to produce more, of higher-valued, slate of products, in a simpler (less costly) process.

