
Types of Extractives 

Binding Simulation Results 

Cellulase-Extractive Binding Simulations 

Extractives in Douglas-fir: Tracking Extractives through Biofuel 
Production and Assessing their Effects on Saccharification 

!
!

Abstract 

Aspen Simulation of Sulfite/Bisulfite Process 
including Extractives 

Extractives in ASPEN Simulation 
Process Streams 

Saccharification Experiments 

Literature indicates that the most abundant classes of extractives 
fall into the following groups: 

Proanthocyanidin and 
phlobaphenes 

Flavonoids Waxes Phytosterols Terpenes 

Condensed Tannin 
Dihydroquercetin Triglyceride Sitosterol α-Pinene 

•  An Aspen simulation was assembled that simulates a sugar depot in order to track what 
streams extractives end up in.   

•  Common biofuel steps such as Pretreatment, Pressing, Saccharification, and Sugar 
Concentration (Evaporator) are included.  

Stream results in kg/hr on a 100kg biomass/hr basis 

 Douglas fir (Pseudotsuga menziesii) has been investigated as a feedstock for 
biofuel processes due to its abundance in western North American timberland. Diverse extractive 
compounds make up 5% to 25% of the dry weight for different tissues of Douglas fir [1], but are 
rarely accounted for in biofuel studies. These%components%are%commonly%lumped%into%a%lignin,%or%
Klason% lignin,% category% and% this% category% is% known% to% bind% to% cellulases% and% obstruct% the%
saccharifica:on%step% in%biofuel%produc:on.%Extrac:ves%may%be%some%of% the%key%culprits%of% this%
inhibi:on.%In%this%work,%we%iden:fy%extrac:ves%that%are%likely%to%be%present%in%key%biofuel%process%
streams%and%analyze%how%extrac:ves%in%the%stream%to%saccharifica:on%inhibit%cellulases.% 

Saccharification experiments with individual extractives added 
          Extractives: Dihydroquercetin and α-Pinene 
          Enzymes: Cellulase from Trichoderma Reesei (Sigma Aldrich) 
          Substrate: Sigmacell Cellulose 
          Saccharification time: 48 hours 
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Stream! Feedstock! Spent!Sulfite!
Liquor!

Saccharifica7on!
Feed!

Evaporator!
Waste!

!

Minimally!Processed!
Sugar!Stream!

Water% 400% 296.252% 423.398%% 382.16% 37.01%
Holocellulose%(Sugars)% 61.919% 7.549% 52.676%% 0% 56.922%
Proanthocyanidins%and%
Phlobaphenes% 3.333% 2.641% 1.126% 0% 1.126%
Flavonoids% 2.424% 0.81% 1.398% 0% 1.398%
Waxes% 1.616% 0% 1.566% 0% 1.566%
Terpenes% 0.505% 0.079% 0.427% .026% 0.401%
Phytosterols% 0.202% 0.001% 0.18% 0% 0.18%
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Extractives added to Saccharification 

48 Hour Glucose Yields from 
Saccharification  

*error bars are 95% Confidence Interval 
  

•  Dihydroquercetin inhibits 
saccharification while α-pinene has 
no noticeable effect 

 
•  Certain extractives such as dihydroquercetin inhibit saccharification, while other such as α-

pinene are relatively inert 

•  Dihydroquercetin binds to the catalytic module of the three enzymes examined here. On 
the catalytic module, they can bind to both catalytic areas and non-catalytic parts of the 
enzyme.   

•  α-pinene also is stable when placed in the catalytic area for two of the enzymes.  However, 
experimental results imply it is unlikely to travel into the catalytic area in the first place 

Dihydroquercetin binding in the exit of the 
catalytic tunnel of Cellobiohydrolase I 

Dihydroquercetin binding to a non-
catalytic section of Endoglucanase I 

Catalytic Module 

Experimental Results 

Cellulases from Trichoderma Reesei simulated%

Extractives used in binding analysis 

Green=at least 1 stable site 
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