

Process Technologies – Wood to Wing

Junyong (J.Y.) Zhu USDA-Forest Products Laboratory

Northwest Advanced Renewables Alliance

Process Technologies-Wood to Wing

2016 NARA Final Meeting Washington, D.C.

1000 gallon IPK – Conversion Supply Chain

 $\sum_{i=1}^{n}$

Vancouver

Wood Tracheid Structure

2015 Annual Meeting Spokane, WA

Cell Wall Structure

Fermentable sugars Lignin co-products

Panshin & de Zeeuw, Text book of Wood technology, 1980, p107

The SPORL Process (Softwood)

SPORL Effects: 180 $SO_2 = 6.5 - 9.0 \%$ Partial delignification without 170 excessive lignin condensation 160 Lignin sulfonation 150 Hemicellulose degradation 140 Cellulose depolymerization 130 120 2 6 8 Δ 0 Patent Nos. 9,090,915 B2 (2015); pН

9,074,231 B2 (2015); 9,243,364 B2 (2016)

The SPORL Process (Softwood)

2015 Annual Meeting Spokane, WA

2015 Annual Meeting Spokane, WA

Enzymatic Glucose Yield –

Combined Hydrolysis Factor (CHF)

Zhu et al., Proc. Biochem, 47:785. 2012

Zhou et al., *Ind Eng Chem Res*, 52:8464. 2013

T (°C)	Time (min)	Inhibitor
180	26	1.000
173	39	0.776
170	47	0.694
165	75	0.575
155	123	0.389
145	240	0.258

Zhang et al., *Process Biochemistry*, 49:466, 2014

Reduce Non-productive Cellulase Binding

2015 Annual Meeting Spokane, WA

Lou et al., <u>*ChemSumChem*</u>, 6:919-927, 2013

Reduce Non-productive Cellulase Binding

2015 Annual Meeting Spokane, WA

USDA

Lou et al., <u>ChemSumChem</u>, 6:919-927, 2013

Enzymatic Saccharification- pH of Effect

IARA

Lou et al. (2013), <u>ChemSumChem</u>, 6(5):919-927

Lignosulfonate (LS) on Enzymatic Hydrolysis – Lignocelluloses

2015 Annual Meeting Spokane, WA

Wang et al., *Biotechnology for Biofuels*, 2013, 6,9 NAR

Lignosulfonate (LS) on Enzymatic Hydrolysis – Lignocelluloses

2015 Annual Meeting Spokane, WA

USDA Wang et al., *Biotechnology for Biofuels*, 2013, 6,9 NAR

SPORL: High SO₂ Loading at 140°C

2015 Annual Meeting Spokane, WA

Douglas-fir Forest Residue

	R-t50	C-t60	C-t120	R-t240-SO ₂ 6
Terminal maximal ethanol				
Time to reach maxima (h)	48	72	48	72
Ethanol concentration (g/L)	54.6 ± 0.6	56.3 ± 0.5	54.5 ± 2.0	41.9 ± 0.3
Ethanol yield (g/g sugar)	0.487 ± 0.005	0.504 ± 0.004	0.460 ± 0.017	0.412 ± 0.003
Ethanol yield (L/tonne wood)	315.5±3.5	321.6 ± 2.9	289.0±10.6	284 ± 2.0
Ethanol yield (% theoretical)	77.6 ± 0.9	79.1 ± 0.7	71.1 ± 2.6	70.0 ± 0.5

Gu et al. (2016), *Ind. Biotechnol.* 12(3):168-175

Ultrafiltration experiment

Sample	LS-Ca (%)	Sugar Mass (%) (%)		Lignin Purity (%)			
Original	100	100	100	44.5			
> 200 kDa	3.9	n/a	2.4	89.1			
4-200 kDa ^a	69.6	7.6	43.2	86.8			
< 4 kDa	24.9	84.3 41.5		19.3			
GPC (MALS) analysis							
Sample	Sample Mw ^b Mn ^c			Mw/Mn ^d			
4-200 kDa	234	130 129	910	1.8			

GPC (UV)	analysis
----------	----------

D748

4-200 kDa	2704	1092	2.5
D-748	13113	3293	4.0

14190

1.7

Zhu et al., *Bioresource Technology*, 179:390-397, 2015

24660

- SPORL pretreatment is effective to remove the strong recalcitrance of softwood forest residue.
- The success of the technology substantially change the landscape of feedstock supply and technology platform.
- Co-products from lignin or sugar are the key to economical biofuel production
- Sustained funding of government lab will pay off in long term.

2015 Annual Meeting Spokane, WA

Funding Sources USDA NIFA 2011-68005-30416 through Northwest Advanced Renewables Alliance (NARA) USDA Forest Service

NARA Feedstock Team Prof. X.J. Pan of University of Wisconsin Other collaborators and visitors

2015 Annual Meeting Spokane, WA

Thank you for attention

Feed Stock Cost Estimate (T4-1): NAS Renewable Fuel Standard - 2011

2015 Annual Meeting Spokane, WA

NARA

Feedstock	WTA (\$/ ton)	WTP (\$/ ton)	Price Gap (\$/ton)	Price Gap (\$/gallon EtOH)
Corn Stover	92	25	67	0.96
Alfalfa	118	26	92	1.31
Switchgrass – MW	133	26	107	1.51
Switchgrass – SC	98	26	72	1.03
Miscanthus – App	105	27	79	1.13
Short Rotation Woody	89	24	65	0.93
Forest Residues	78	24	54	0.77
Wheat Straw	75	27	49	0.70

SPORL: High SO₂ Loading at 140°C Douglas-fir Forest Residue

Gu et al. (2016), *Ind. Biotechnol.* (In Press)

Run Labels	R-t50	C-t60	C-t120	R-t240-SO ₂ 6
T (°C)	140	140	140	145
Heat-up time to T (min)	40	32	36	37
Time at T (min)	50	60	120	240
Metal base	Mg	Mg	Mg	Са
Total SO ₂ on wood (wt%)	32; 27.4 (measured)	32 ; 28.6 (measured)	32; 26.3 (measured)	6.6; 6.6 (measured)
Combined SO ₂ on wood (wt%) ^a	4.4; 3.2 (measured)	4.4; 4.8 (measured)	4.4; 3.6 (measured)	4.1; 4.1 (measured)
Liquor to wood (L/kg)	4.0	4.0	4.0	3.55
Mixing mechanism	rotation	circulation	circulation	rotation
Carbohydrate dissolution ar	nd inhibitor formation	on - Concentration	in spent liquor (g/l	L)
Glucose	7.29	6.72	9.93	9.40
Mannose	20.70	17.66	18.39	20.64
Xylose	10.36	8.29	9.91	8.54
Acetic acid	4.73	4.15	5.43	3.18
Levulinic acid	0.12	0.09	0.24	ND
HMF	0.04	0.08	0.32	0.26
Furfural	0.16	0.33	1.00	0.69

SPORL Solubilized Lignin -Lignosulfonate

Functional group contents and molecular weights of three LSs

Sampla	Funct	Functional group content (mmol/g)			Molecular weight		
Sample Sulfonic	Sulfonic	Phenolic hydroxyl	Carboxyl	Mw	M n	<i>M</i> w/ <i>M</i> n	
Ca-LS-DF	1.35	1.75	0.84	10650	3730	2.86	
Na-LS-LP	1.47	1.76	0.73	8870	3120	2.84	
Reax-85A	1.23	1.75	0.90	8020	3240	2.47	

Qin et al., (2016), <u>ACS-Sustainable Chem. Eng.</u>, (under re-review)

LS MW on **Enzymatic Hydrolysis – Lignocelluloses** (%) 4 22 70 × 70 Control With Lignosulfonate Fraction SXP1 Fraction SXP2 Cellulose saccharification (a)Fraction SXP3 60 50 **40** 30 20 **AS-DA** LP-KP LP-SP Whatman **AS-SP**

Zhou et al., *Ind Eng Chem Res*, 2013, 52:8464

Scale-up Pretreatment

Maintain same pretreatment severity (CHF): $CHF = e^{\uparrow}(\alpha - E/RT + \beta C \downarrow A + \gamma C \downarrow B) (C \downarrow A + C \downarrow B)$

)t

Reaction time at low T can be determined

 $t\uparrow Tup = exp[-E/R(1/T\uparrow up - 1/T\uparrow lab)] t\uparrow Tlab$

R = 8.314 J/mole/K, E = 100,000 J/mole

Zhang et al., Process Biochemistry, 49:466, 2014

Sugar Degradation

 $dD/dt = k \downarrow d (1 - X \downarrow R) k \downarrow d = e \uparrow (\alpha \downarrow d - E \downarrow d / RT)$

$X \downarrow R = (1 - \theta)e^{\uparrow} - CHF + \theta e^{\uparrow} - f CHF$

 $D = k \downarrow d \cdot t [1 - 1 - \theta / CHF (1 - e^{\uparrow} - CHF) - \theta / f \cdot CHF (1 - e^{\uparrow} - f \cdot CHF)]$

$$\frac{D_{T1}}{D_{T2}} = \frac{k_d^{T1}}{k_d^{T2}} \frac{t^{T1}}{t^{T2}} = exp\left[\frac{E - E_d}{R} \left(\frac{1}{T1} - \frac{1}{T2}\right)\right]$$

Zhang et al., Process Biochemistry, 49:466, 2014

Project Status

Pretreated 60 tonnes Forest Residue using SPORL – ZeaChem, OR – Aug - Sep., 2015

...........

Enzymatic Saccharification and Fermentation at ICM, MO – Nov.-Dec., 2015

Hacka

IPK conversion at South Hampton, TX – June, 2016
 Biojet-blending and certification – August. 2016
 Commercial flight by Alaska Airlines – 2016

2015 Annual Meeting Spokane, WA

Ground Douglas-fir Residue Fractions

Zhang and Zhu (2013), *BioEnergy Research* 5(4):978-988

Sample	Bark	Klason Lignin	Glucan	Xylan	Mannan	G+X+M
As harvested	5.9	30.5	38.4	4.4	7.5	50.3
FS-10 screened out fraction I	3.4	29.3	41.0	5.7	9.7	56.4

Hemicellulose Dissolution vs Combined (hemicelluloses) Hydrolysis Factor (CHF) – Lodgepole Pine

2015 Annual Meeting Spokane, WA

Zhou et al., Ind Eng Chem Res, 52:8464. 2013

Maintain same pretreatment severity (CHF):

$CHF = e^{\uparrow}(\alpha - E/RT + \beta C \downarrow A + \gamma C \downarrow B) (C \downarrow A + C \downarrow B) t$

Reaction time at low T can be determined $t^T up = exp[-E/R(1/T^{T}up - 1/T^{T}lab)] t^T T lab$

R = 8.314 J/mole/K, E = 100,000 J/mole

Zhang et al., *Process Biochemistry*, 49:466, 2014

 $dD/dt = k \downarrow d (1 - X \downarrow R)$ $k \downarrow d = e^{\uparrow} (\alpha \downarrow d - E \downarrow d / RT)$

$X \downarrow R = (1 - \theta)e^{\uparrow} - CHF + \theta e^{\uparrow} - f CHF$

 $D = k \downarrow d \cdot t [1 - 1 - \theta / CHF (1 - e^{\uparrow} - CHF) - \theta / f \cdot CHF (1 - e^{\uparrow} - f \cdot CHF)]$

$X \downarrow R = (1 - \theta)e^{\uparrow} - CHF + \theta e^{\uparrow} - f CHF$

Zhang et al., *Process Biochemistry*, 49:466, 2014

