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This NARA EPP Task 4 report consists of four subtask reports:

	 •	 Subtask 4.1: Review of the U.S. Biofuels Industry

	 •	 Subtask 4.2: Commercialization Factors for the U.S. Cellulosic  
		  Biofuels Industry

	 •	 Subtask 4.3: Review of the U.S. Bio-based Chemicals Industry

	 •	 Subtask 4.4: Opportunities for Lignin Valorization

An examination of bioproduct polymers indicates projected high growth 
markets. To better understand the impact of this market opportunity on the 
US biorefinery industry, the NARA EPP team developed a unique approach to 
examine biorefinery value chain outputs. This study characterized the structure 
of the US biofuels industry (n=414 biorefineries) and the US bio-based chemicals 
industry (n=35 companies). This study has also examined the cellulosic biofuel 
biorefineries regarding commercialization factors. The top three drivers for the 
commercialization of cellulosic biofuels were government policies, added value 
from non-fuel co-products, and carbon emission reduction; the top three barriers 
to the commercialization of cellulosic biofuels were competition vs. petroleum-
based fuels, policy uncertainty, and high production costs. Examination of 
perceptions of academic researchers and industrial experts on the development 

and scale-up of cellulosic biofuels provides many insights related to policy, 
investment, economies, and cellulosic biofuels logistics. Additionally, our work 
presents a sequential process for examining potential lignin valorization. First, a 
short list of high-opportunity lignin products was developed from the literature. 
Several low-hanging product opportunities were identified, from which, lignin-
based powdered activated carbon (PAC) for the sequestration of mercury from 
power plant flue gas was selected for further examination due, in part, to lignin’s 
similarity to lignite coal. Next, an analysis of the web-based written content of PAC 
suppliers’ promotional materials was performed to assess the attributes on which 
PAC products are sold and purchased.  Finally, potential electric generating power 
plant buyers/users of lignin-based PAC for mercury sequestration were surveyed to 
examine the importance of 16 PAC product and service attributes, identify potential 
entry barriers for a new PAC product, and assess the market opportunity for lignin-
based PAC. The top three product and service attributes for buyers/users of PAC 
for mercury mitigation were Product Reliability, Product Effectiveness, and Proven 
Product Performance; the top three barriers to entry for a new lignin-based PAC 
include Title V Permitting, Operational Impacts, and Compliance with Regulations. 
Buyers/Users are undecided about trial testing a lignin-based PAC product, but 
would be more likely to purchase from an existing vendor rather than a new vendor.  
As a whole, these activities provide strategic insights into the potential value chain 
outputs for U.S. biorefineries.

EXECUTIVE SUMMARY
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Fossil fuels have long been the predominant source of liquid fuels, chemicals, and 
energy (Amidon et al., 2008; Naik, Goud, Rout, & Dalai, 2010).  However, fossil fuel 
reserves are not infinite or sustainable from an economic and environmental point 
of view (Kamm, Kamm, Gruber, & Kromus, 2005). Concerns regarding global climate 
change, volatile oil prices, and resource depletion have collectively motivated 
research into sustainable and renewable alternatives (Fernando, Adhikari, 
Chandrapal, & Murali, 2006; Zaimes, Vora, Chopra, Landis, & Khanna, 2015). Liquid 
biofuels from renewable carbon sources are at the forefront of these developments 
as they contribute to maintaining national energy security, improving rural 
economic development, and reducing carbon emissions (Balan, Chiaramonti, & 
Kumar, 2013; Cherubini, 2010; Gegg, Budd, & Ison, 2014).  

Growth of The U.S. Biofuels Industry
In the United States, corn-grain ethanol and biodiesel have served as the major 
substitute fuels for petroleum-based gasoline and diesel over the past few decades. 
Today, these two first generation biofuels account for over 90 percent of the total re-
newable biofuels within the United States (Environmental Protection Agency, 2015). 
The U.S. corn-grain ethanol industry, with the production volume growth at an an-
nual rate of 67 percent from 1991 to 2015 (Renewable Fuels Association, 2016b) (Fig-
ure VCO-Intro.1), has also reshaped corn farming by reducing government support 
for cropping subsidies while raising farmers’ incomes (Renewable Fuels Association, 
2014). The production of 14.8 billion gallons of ethanol supported 85,967 direct 
jobs in the renewable fuel and agricultural industries (Renewable Fuels Association, 
2016a). Meanwhile, corn ethanol blends in gasoline (typically, up to 10%) improve 
the octane number and add oxygen content to meet the U.S. Clean Air Act (CAA) (Ur-
banchuk, 2010). Similarly, the U.S. biodiesel industry (Figure VCO-Intro.2) has aided 
in the development of the rural economy by providing over 60,000 jobs nationwide 
(National Biodiesel Board, 2015b). Biodiesel also contributes to the U.S. CAA with 52 
percent lower GHG emissions compared to petroleum-based diesel (Energy Efficien-
cy & Renewable Energy, 2015). 

Despite the benefits of first generation corn-grain ethanol, the “food-versus-fuel” 
and ethanol “blend wall” arguments continue to constrain the industry (Table 
VCO-Intro.1). The “food-versus-fuel” debate has lasted for more than a decade 
and includes controversy over food security (Carter & Miller, 2012; Ziegler, 2008) 

and food price inflation (Ahmed, 2008; Ajanovic, 2011; Bardhan, Gupta, Gorman, & 
Haider, 2015; Cuesta, 2014). The ethanol “blend wall” also constrains the growth of 
the U.S. corn ethanol industry due to the E10 (10%) blend limit (Figure VCO-Intro.3), 
the infrastructure requirements for higher blend options and consumer acceptance 
for higher biofuel blends (Energy Information Administration, 2011). In addition to 
the food-fuel issue, biodiesel fuels also face challenges related to environmental, 
economic and social impacts, for example, NOx emission, distribution and 
infrastructure modifications, and land use change (Bomb, 2005; Castanheira, 
Grisoli, Freire, Pecora, & Coelho, 2014; Rabago, 2008). As a result, interest in 
developing new biofuels from non-food based lignocellulosic feedstocks has grown 
(Brown & Brown, 2013; Mohr & Raman, 2013; Solomon, Barnes, & Halvorsen, 2007).

INTRODUCTION
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Figure VCO-Intro.1. Growth of the U.S. corn-grain ethanol industry (# of biorefineries and production) from 
1991 – 2015 (Renewable Fuels Association, 2015, 2016)
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Compared to first generation biofuels, second generation cellulosic alcohols 
(ethanol and butanol) avoid the food-fuel controversy while benefiting from 
lower lifecycle GHG emissions (Balan, Chiaramonti, & Kumar, 2013; FitzPatrick, 
Champagne, Cunningham, & Whitney, 2010). However, cellulosic biofuels have 
yet to become widely commercialized (Balan et al., 2013; FitzPatrick et al., 2010). 
Meanwhile, KiOR’s November 2014 bankruptcy and Cobalt’s June 2015 asset auction 
signal the challenges faced by cellulosic biofuel startups seeking scaled production. 

Integrated Biorefineries
Facing these issues, several researchers have suggested a short-to-medium term 
strategy for the scale-up of the U.S. cellulosic biofuels industry; that is, to integrate 
the production of bio-based chemicals with cellulosic biofuels (Bozell, 2008; Bozell 
& Petersen, 2010; Cherubini, 2010; Cherubini & Strømman, 2011; FitzPatrick et al., 
2010). This integrated biorefinery scenario can provide a diversified value stream 
outputs, and contribute to effective utilization of feedstock fractions, improvement 
of financial performance and mitigation of potential risks (Bozell, 2008; Bozell & Pe-
tersen, 2010; FitzPatrick et al., 2010).  A techno-market assessment of selected bio-
based polymers, which was initiated in January 2013, has been completed by Year 
3 for the NARA project. Major research efforts have been focused on the bioplastics 
industry, including the global market and growth trend for the overall bioplastics 
industry (Figure VCO-Intro.4).

Figure VCO-Intro.3. Annual U.S. ethanol production volumes from 2006 to 2015 and their corresponding 
percentage of the conventional motor gasoline consumption (*2015 fuel ethanol consumption data is based 
on the prediction from EIA) (Chen, Smith, & Wolcott, 2016; Energy Information Administration, 2016b, 2016c)

Figure VCO-Intro.4. Global Production Capacity of Bioplastics. Adapted from Bioplastics facts and figures 
[Infographic]. Institute for Bioplastics and Biocomposites, nova-Institute (2015). Retrieved from http://docs.
european-bioplastics.org/2016/publications/EUBP_facts_and_figures.pdf
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Figure VCO-Intro.2. Growth of the U.S. biodiesel industry (# of biorefineries and capacity) from 2001 to 
2015 (Energy Information Administration, 2016b) (*The production volume of 2015 is predicted by the first 11 
months of 2015)
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Lignin Valorization
Lignin was discovered in 1838 by Anselme Payen when wood reacted in an acidic 
then alkaline solution, resulted in an insoluble residue (McCarthy & Islam, 2000). 
Since then, over 10,000 scientific papers have been published on lignin, each con-
tributing to a puzzle that remains incomplete today (Zakzeski et al., 2010). 

Lignin constitutes 15 percent to 40 percent dry weight of lignocellulosic feedstock 
resulting in a large waste stream (Ragauskas et al., 2014). Lignin, an established 
byproduct of pulp mills, has traditionally been burned for combined heat and 
power. However, in second generation biorefineries, approximately 60 percent more 
lignin is generated than is needed to meet plant energy needs through combustion 
(Sannigrahi et al., 2010). As a result, research efforts are accelerating to identify 
viable opportunities for lignin valorization.

Globally, approximately 50 million tons of lignin are produced annually, while 
lignin-derived products represent 1 percent to 2 percent of the world’s lignin 
production and the remaining 98 percent is burned for energy or landfilled 
(Gargulak and Lebo 1999; Lora and Glasser 2002; Mansouri and Salvadó, 2006; 
Vishtal and Kraslawski, 2011; Smolarski, 2012). Energy captures the most market 
volume, although it offers the lowest value-added opportunity (Higson & Smith, 
2014). Current lignin products can be segmented into several categories: binding 
agents, rheology control, dispersing agents, emulsion stabilizers, and retardants 
(Gargulak & Lebo, 1999; Smolarski, 2012) (Figure VCO-Intro.5). Concrete additives 
are a value-added application for lignin waste to reduce water usage in concrete 
and retard concrete setting time (Gargulak & Lebo, 1999; Smolarski, 2012). Vanillin 
is a unique value-added product from lignin that is exclusively manufactured by 
Borregaard as a flavoring agent (Borregaard, 2015). The lignin product market has 
grown from $2 million in 1960 to $180 million in 1984 (Tillman, 1985) to $730 million 
in 2014 (Frost & Sullivan, 2014), excluding energy. 

Markets for potential lignin-based products vary in terms of volume and value, 
creating different strategic opportunities for biorefineries to add value to lignin 
(Figure VCO-Intro.5). Whereas lignin-based phenol and carbon fiber are poised to 
capture the largest market potential, factors such as cost of production and viable 
chemical pathways to products limit commercial feasibility (Kleinert & Barth, 2008; 
Ragauskas et al., 2014). 

An alternative potential market with lower volume and value potential is lignin-
based benzene, toluene and xylene (BTX), which requires a depolymerization of 
lignin followed by separation, of which there are technology limitations (Cherubini 
& Strømman, 2011; Strassberger et al., 2014). Powdered Activated Carbon (PAC) is 
another potential market due to lignin’s high carbon content, abundant supply and 
the changing regulatory landscape for electric generating power plants (Ragan & 
Megonnell, 2011; Suhas et al., 2007; Anonymous, 2013; Anonymous, 2015). 

PAC for removing mercury from power plant flue gas streams is traditionally 
manufactured from lignite coal due to the coal’s ability to generate proper PAC 
structure. Lignin is a precursor to lignite coal through a three step geochemical 
process that transforms lignin into lignite coal. This process is known as 
coalification, which includes; microbiological degradation of cellulose; the 
conversion of lignin into humic substances; and the condensation of the humic 
substances into coal molecules (Miller, 2011). The lignin molecule is estimated 
to experience a dehydroxylation process, a cleavage of the B-O-4 ether bond, 
and a demethylation process to coalify lignin into lignite coal (Hatcher & Clifford, 
1997). Due to the similarities between lignin and lignite coal, lignin has potential 
as a feedstock for the production of powdered activated carbon for mercury 
sequestration (Figure VCO-Intro.6).
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Market Drivers
In December 2011, the EPA signed the MATS rule under the Clean Air Act Section 111 
and 112 requiring coal-fired power plants over 25 MW to reduce their toxic emis-
sions by April 2016 (EPA, 2012). The MATS called for existing and new power plants 
to cut mercury emissions by 91% from 2010 levels with a cost to power plants esti-
mated at approximately $9.6 billion per year (EPA, 2012; Ray, 2015). The MATS were 
brought to the U.S. Court of Appeals for the D.C. Circuit on April 2014, where the rul-
ing was upheld in a 2-1 decision (Larson, 2015). On November 25, 2014 the Supreme 
Court of the United States (SCOTUS) agreed to hear the case by consolidating three 
cases (Michigan, et al. v. EPA, Utility Air Regulatory Group v. EPA et al., and National 
Mining Assoc. v. EPA, et al.) focused on the limited question of: “whether the EPA 
unreasonably refused to consider costs in determining whether it is appropriate to 
regulate hazardous air pollutants emitted by electric utilities” (Reitenbach, 2014). 

In March 2015, the SCOTUS over-ruled the MATS due to the EPA’s lack of 
consideration of the costs associated with MATS implementation (Neuhauser, 
2015).  As a result, the EPA proposed supplemental cost of MATS data in November 
2015, suggesting that the costs of the MATS “does not alter the EPA’s previous 

determination that it is appropriate to regulate air toxics, including mercury, from 
power plants” (EPA, 2015). A date to readdress the SCOTUS ruling on MATS has yet 
to be released. Regardless, the U.S. Energy Information Administration (EIA) has 
reported that 77 percent of the nation’s coal-fired power fleet has or will have met 
the emission regulations by installing emission controls by 2016 (Frazier, 2016; P. 
Gray et al., 2015).

Powdered Activated Carbon (PAC) for Mercury Sequestration
The combustion of coal feedstock in power plants releases mercury emissions into 
the biosphere where it is transformed into methylmercury, a neurotoxin (Bowen & 
Irwin, 2007; Chang, 1977; Hu et al., 2013). The U.S. contains three main coal-produc-
ing regions: Western Region (approx. 53%), Appalachian Region (approx. 27.4%) and 
Interior Region (approx. 18.6%) (EIA, 2016). Mercury emissions are a function of both 
the mercury content and calorific value (BTUs) of the coal, which varies by coal-pro-
ducing region (Toole-O’Neil et al., 1999). The Appalachian region generally has the 
highest mercury content (ppm) and the Western Region the lowest. (Tewalt., et al. 
2001; Toole-O’Neil et al., 1999)

Mitigating mercury from power plants can be achieved through various 
mechanisms including: controls for particulate matter, sulfur dioxide and nitrogen 
oxides (Strivastava, 2010); the reinjection of partially combusted coal, known as The 
Thief Process (Granite et al., 2007); and, the most effective mechanism, activated 
carbon injection systems (ACI) where the mercury contaminated PAC is disposed 
of safely in landfills or used as a concrete amendment (Gray, 2013; Sjostrom et al., 
2010; Sjostrom, 2014; Zykov et al., 2014). 

Lignin-based Powdered Activated Carbon (PAC) 
Lignin is approximately 60 percent carbon and has a structure similar to bitumi-
nous coal, thus providing an opportunity as a renewable high carbon feedstock for 
the manufacture of carbon fiber and activated carbon (Kadla et al., 2002; Norberg, 
2012; Ragan & Megonnell, 2011; Ragauskas et al., 2014; Suhas et al., 2007). Activated 
carbon has been produced from high carbon content materials such as hardwoods, 
coconut shells, fruit stones, coals and synthetic macromolecular systems (Marsh & 
Reinoso, 2006). Activated carbon is used in liquid phase and gas phase applications 
(Marsh & Reinoso, 2006) and may be used in various forms including powdered, 
granulated, and extruded activated carbon (Cabot, 2014). 

Scientists have developed lignin-based PAC products through physical and 
chemical activation pathways (Ragan & Megonnell, 2011; Suhas et al., 2007). Lignin-
based PAC has been studied for its use in liquid phase applications (Fu et al., 2013); 
however, in laboratory settings, NARA researchers have successfully applied lignin-
based PAC in a gas phase application to sequester mercury from power plant flue 
gas streams (I. Dallmeyer, personal communication, November 10, 2015). Various 
performance-based, market-entry issues including, but not limited to PAC porosity 
and mercury capture rates are currently under investigation (I. Dallmeyer, personal 
communication, October 15, 2015).

Figure VCO-Intro.6. Proposed coalification process from lignin to lignite coal. Adapted from “The organic 
geochemistry of coal: from plant materials to coal,” by Hatcher, P.G. & Clifford, D.J., 1997, Organic Geochem-
istry, 27(5–6), p. 255. 
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OBJECTIVE
The overall goal of this task is to present a comprehensive review of the U.S. biofu-
els industry.

METHODOLOGY
A wide variety of secondary information sources regarding bioenergy, biofuel, and 
biorefinery have been selected and critically assessed. Those information sources 
are obtained from government organizations, industrial associations, magazines, 
and academic journals as listed in Table VCO-1.1.

RESULTS
Over 90% of U.S. ethanol biorefineries use corn grain as feedstock; the remaining 
use sorghum, cheese whey or waste beer (O’Brien, 2010; Renewable Fuels Associa-

tion, 2015). Figure VCO- 1.1 illustrates the 208 U.S. corn-grain ethanol biorefineries 
in 2015 with the heaviest concentrations in the Midwestern corn-belt of Iowa (n=40), 
Nebraska (n=25), Minnesota (n=21), South Dakota (n=15) and Illinois (n=14).

Biodiesel is defined under the standard of ASTM D6751 as “a fuel comprised of 
mono-alkyl esters of long-chain fatty acids”, and can be produced from vegetable 
oilseeds (such as rapeseed, sunflower, olive, and soybean), animal fats (such as 
poultry, tallow, and white grease) or recycled restaurant grease (e.g. yellow grease) 
(Alternative Fuels Data Center, 2014; Energy Information Administration, 2016b; 
Lai, 2014). Among all biodiesel feedstocks, vegetable oilseeds were the major 
biodiesel feedstock, accounting for approximately 71 percent of the U.S. total in 
2015 (Energy Information Administration, 2016b). That year, soybean oil was the 
largest feedstock accounting for 52 percent of the total, followed by recycled grease 

(14.3%), animal fats (13.4%), corn oil (11%), canola oil (8%), and other (1.3%) 
(Energy Information Administration, 2016b). Figure VCO-1.2 4 shows the locations 
of the identified 162 U.S. biodiesel biorefineries in 2015 (Biodiesel Magazine, 2015; 
Lane, 2013a; National Biodiesel Board, 2015a). 

TASK 1: REVIEW OF THE U.S. BIOFUELS INDUSTRY

Table VCO-1.1. Secondary information sources

Government 
organizations 

U.S. Department of Agriculture (DOA) Forest Products Laboratory; 
U.S. Department of Energy (DOE) National Renewable Energy 
Laboratory (NREL) and Bioenergy Technologies Office (BTO); and 
U.S. Energy Information Administration (EIA) 

Industrial 
organizations 

Renewable Fuels Association (RFA) and National Biodiesel Board 
(NBB) 

Journals & websites Ethanol Producer Magazine, Biofuels, Bioproducts and Biorefining, 
and BiofuelsDigest.com 

Figure VCO-1.1. U.S. corn-grain ethanol biorefineries (n=208) by location in 2015. Adapted from “Ethanol 
Biorefinery Locations”, Renewable Fuels Association, 2015. Retrieved from http://www.ethanolrfa.org/
resources/biorefinery-locations/.

Figure VCO-1.2. U.S. biodiesel biorefineries (n=162) by location in 2015 (Adapted from (Biodiesel Magazine, 
2015; Lane, 2013a; National Biodiesel Board, 2015a))
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A wide variety of agricultural biomass can be used as raw materials to produce 
cellulosic alcohols including short rotation forestry crops (poplar, willow), perennial 
grasses (miscanthus, switchgrass), agricultural, forest and mill residues, and 
municipal solid waste (MSW) (Pacini, Sanches-Pereira, Durleva, Kane, & Bhutani, 
2014; Sims, Taylor, Saddler, & Mabee, 2008). Compared to petroleum-based fuels 
and corn-grain ethanol, cellulosic alcohols benefit from their reliance on non-food 
based feedstocks, less competition on land use, and lower lifecycle GHG emissions 
(Balan, Chiaramonti, & Kumar, 2013; FitzPatrick, Champagne, Cunningham, & 
Whitney, 2010; Pacini et al., 2014). 

Cellulosic alcohols may be produced in either “bolt-on” and “stand-alone” 
biorefineries. “Bolt-on” facilities are added to or co-located with existing corn-grain 
ethanol biorefineries to leverage existing corn-grain ethanol facilities. These “bolt-
on” cellulosic biorefineries can share feedstock and distribution supply chains and 
lower capital costs to reduce investment risk (Morrison, Witcover, Parker & Fulton, 
2016; Lane, 2014). Currently, eleven U.S. “bolt on” cellulosic biofuel biorefineries 
are in start-up mode (Table VCO-1.2) with two having launched commercial-scale 
production: POET-DSM “Project Liberty” (Sept. 3, 2014) and Quad County Corn 
Processors (July 1, 2014) (Fuels America, 2014).

In addition, sixteen U.S. “stand-alone” cellulosic alcohol biorefineries have been 
identified with three having successfully launched commercial scale production: 
Abengoa Bioenergy 25 MGY in Hugoton, KS (Oct. 19, 2014); DuPont 30 MGY in 
Nevada, IA (Oct. 30, 2015); and INEOS Bio 8 MGY in Vero Beach, FL (July 31, 2013) 
(Fuels America, 2014; DuPont, 2015b; INEOS, 2013). Fifteen biorefineries produce 
cellulosic ethanol as the major product; Butamax focuses on the production of 
n-butanol (Table VCO-1.3).

The U.S. biofuels industry has also witnessed considerable progress of the non-
food based hydrocarbon biofuels, which are drop-in replacements for gasoline, 
diesel, and jet fuel (Savage, 2011). Drop-in hydrocarbon biofuels are chemically 
similar to petroleum-based fuels and therefore are fully compatible with existing 
infrastructure, i.e., no need for engine modifications and drop-in biofuels may 
use existing petroleum distribution systems (Alternative Fuels Data Center, 2016). 
As of January 2016, seventeen companies are currently or proposing to use 
second generation (lignocellulsoic) and third generation (algal) feedstock for the 
production of various end products (Table VCO-1.4). 

Table VCO-1.2. “Bolt-on” cellulosic alcohol biorefineries in U.S. as of January 2016 (n=11)

Companies Location Product Capacity 
(gallons/year) 

Citations 

Abengoa York, NE Ethanol 20,000 (Piersol, 2011) 
ACE ethanol Stanley, WI Ethanol Up to 3.6 million (Lane, 2013b) 

ADM Decatur, IL Ethanol 25,800 (Lane, 2013a) 
Aemetis Keyes, CA Ethanol NA (Aemetis, 2012) 

Flint Hills Fairbank, IA Ethanol NA (Business Wire, 2012) 
Front Range Windsor, CO Ethanol Up to 3.6 million (Sweetwater Energy, 2013) 

Gevo Luverne, MN Iso-butanol 0.6~1.2 million (Gevo, 2015) 
ICM St. Joseph, MO Ethanol NA (ICM, 2012) 

Pacific Ethanol Boardman, OR Ethanol Up to 3.6 million (Pacific Ethanol, 2013) 
POET-DSM Emmetsburg, IA Ethanol 25 million (POET-DSM, 2014) 

Quad-County 
Corn Processors 

Galva, IA Ethanol 2 million (Advanced Ethanol Council, 
2015; Quad County, 2015) 

Table VCO-1.3. “Stand-alone” cellulosic alcohol biorefineries in U.S. as of January 2016 (n=16)

Company Location Feedstock Products Capacity 
(MGY) 

Citations 

Abengoa Hugoton, KS Corn stover, 
switchgrass 

Ethanol 25 (Abengoa, 2014) 

American 
Process 

Alpena, MI 

Thomaston, GA 

Sugarcane 
bagasse 

Non-food based 
biomass, 
woodchips 

Ethanol, 
acetic acid 

Ethanol, 
succinic acid, 
BDO 

0.7 

Up to 0.3 

(Advanced Ethanol 
Council, 2013)  
(American Process, 
2015)  

Beta 
Renewables 

Clinton, NC Energy grasses Ethanol, 
lignin 

20 (Advanced Ethanol 
Council, 2013)  
(Beta Renewables, 
2013)  

Bluefire 
Renewable 

Fulton, MS 

Anaheim, CA 

Municipal solid 
waste (MSW) 

Ethanol 19 

200 lbs/day 

(Advanced Ethanol 
Council, 2013)  
(Blue Fire Renewables, 
2015)  

Butamax Wilmington, DE Woody Biomass n-butanol NA (Butamax, 2013) 
Canergy Imperial Valley, 

CA 
Energy cane Ethanol 25 

(Canergy, 
2015) 

(Canergy, 2015) 

Coskata Madison, PA Woody chips, 
MSW 

Ethanol, 
ethylene 

NA (Coskata, 2015) 

DuPont 
Biofuel 
Solutions 

Nevada, IA Corn cob Ethanol 30 (Dupont, 2015b) 

Enerkem Pontotoc, MS MSW Ethanol and 
methanol 

10 (Advanced Ethanol 
Council, 2013)  

Fiberight Blairstown, IA MSW Ethanol 6 (Advanced Ethanol 
Council, 2013) 
(Fiberight, 2015)  

INEOS Vero Beach, FL Vegetative and 
wood waste 

Ethanol 8 (INEOS, 2013) 

Mascoma Kinross, MI Hardwood Ethanol & 
biochemicals 

20 (Balan, Chiaramonti, & 
Kumar, 2013)  

Mendota 
Bioenergy 

Five Points, CA Energy beets Ethanol 15 (Mendota Bioenergy, 
2015)  

ZeaChem Boardman, OR Energy woods Ethanol & 
biochemicals 

0.25 

25 

(ZeaChem, 2012) 
(Balan et al., 2013) 
(Brown & Brown, 2013) 



12BIOREFINERY VALUE CHAIN OUTPUTS  |  FINAL REPORT

Conclusion
Future biofuel conversion technologies and resultant final products are difficult to 
predict; however, a fully drop-in, sustainable and energy dense biomass-based liq-
uid fuel at price parity with petro-based fuels is the ultimate goal to address societal 
needs around climate change and energy security (Babcock, Marette, & Tréguer, 
2011). In particular, specific biofuel pathways will be driven by a favorable value 
proposition vis-à-vis petro-fuels in terms of overall economics and proven environ-
mental benefits without perceived negative impacts on performance. This paper 
provides an up-to-date critical review for researchers and policymakers to better 
understand the structure of existing U.S. biorefineries and to benchmark future 
opportunities for the U.S. bioeconomy.

Table VCO-1.4. Drop-in hydrocarbon biofuels start-ups as of January 2016 (n=17)

Company Location Products Citations 

Lignocellulosic biomass 

Amyris Emeryville, CA Renewable diesel from farnesene (Amyris, 2016) 
Cool Planet Alexandria, LA Renewable jet fuels & gasoline (CoolPlanet, 2015) 
Emerald Biofuels Chicago, IL Renewable diesel (Emerald, 2015) 
Envergent (UOP 
& Ensyn) 

Kapolei, HI Green diesel & jet fuel (Envergent, 2015) 

Fulcrum 
BioEnergy 

Storey County, 
NV 

SPK jet fuel or renewable diesel (Fulcrum, 2015) 

Haldor Topsoe 
Inc. 

Pasadena, TX Dimethyl ether, renewable 
gasoline 

(Topsoe, 2015) 

LanzaTech Soperton, GA Drop-in jet fuel via Alcohol-to-Jet 
(ATJ) 

(LanzaTech, 2015) 

Maverick Synfuels Brooksville, FL Renewable diesel/jet fuel via 
Methanol-to-Olefins (MTO) 

(Maverick, 2015) 

Red Rock Biofuels Fort Collins, CO Drop-in jet, diesel and naphtha 
fuels 

(RedRock, 2015) 

Sundrop Fuels Longmont, CO Green gasoline (Sundropfuels, 2015) 
SynTerra Energy CA & OH Synthetic diesel fuel (SynTerra, 2012) 
Terrabon, Inc. Bryan, TX Renewable gasoline & chemicals (Terrabon, 2008) 
Virent Madison, WI Renewable diesel, jet fuel & 

gasoline 
(Virent, 2015) 

Algae 

Algenol Fort Myers, FL Renewable diesel, gasoline and jet 
fuel 

(Algenol, 2016) 

Joule Unlimited Hobbs, NM Sunflow-D (diesel) (Jouleunlimited, 
2014) 

Sapphire Energy Columbus, NM Gasoline from omega oils (Bardhan, Gupta, 
Gorman, & Haider, 
2015; Sapphire, 
2014) 

Solazyme Peoria, IL Soladiesel, Solajet (Bardhan et al., 2015; 
Solazyme, 2014) 
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OBJECTIVE
The OVERALL objective is to examine, understand and quantify the perceived driv-
ers for and barriers to the commercialization of the U.S. cellulosic biofuels industry 
among academic researchers and industrial experts.

METHODOLOGY
Data were collected via quantitative surveys between July and November 2015. The 
sample population for this study was obtained from the registration lists of the 2015 
annual meetings of seven U.S. Department of Agriculture (USDA) Coordinated Agri-
cultural Projects (CAPs) (Table VCO-2.1) (National Institute of Food and Agriculture 
(NIFA), 2015). These CAPs contain significant science-based expertise in research, 
education, and extension, as well as expertise gained from collaboration with key 
stakeholders and industrial partners. As a result, these seven programs represent a 
unique set of knowledge and experience on all aspects of biorefinery supply chains. 
To balance industrial expert group representation, attendees to the following two 
industrial conferences were added to our population: the 2015 National Advanced 
Biofuel Conference & Expo (NABC&E) and the 12th Advanced Bioeconomy Leader-
ship Conference (ABLC) (Table VCO-2.1). These two conferences represent the U.S. 
biofuels and bio-based chemicals industries. In this sense, the samples analyzed in 
the paper are non-probability convenience samples.

The semi-structured survey instrument consisted of RATING questions designed 
to examine the importance of the drivers for and the degree of barriers to the 
commercialization of the U.S. cellulosic biofuels industry.  Because of the emphasis 
of impediments to economy of scale by policymakers and academic researchers, 
this study’s authors purposefully included a RANKING question to delineate the top 
three barriers in a meaningful and interpretable way (Dillman, Smith, & Christian, 
2014). In other words, RANKING forced differences, which may not have been 
produced in the RATING question. 

The procedure of administering the quantitative surveys includes several steps. 
Initially, a paper-based survey was administered at each venue. Later, a three-
email follow-up strategy was deployed via an online-based survey to increase 
response rates. The first email included an embedded URL link to a SurveyMonkey® 
website, followed by two reminder emails at one-week intervals sent to all non-
respondents (Dillman, Smith, & Christian, 2014). Data collection efforts resulted in 
274 respondents (Table VCO-2.2), and the overall response rate was approximately 

40%. The graduate students participating in this study represented young, relatively 
inexperienced professionals and future energy issues decision makers (Halder, et 
al., 2012); professors were typically research focused, often on specific bioenergy 
related issues; and industrial experts were the most experienced group and, 
arguably possess a bigger picture of the U.S. biofuels industry, but perhaps not 
as much expertise on a single focused issue compared to academic researchers. 

Table VCO-2.1. The Seven USDA Coordinated Agricultural Projects (CAPs) (NIFA, 2015) and Two Industrial 
Conferences

CAPs Lead University 
2015 Annual 

Meeting Date & 
Location 

Academic 
researchers 

Industrial 
experts 

Advanced Hardwood Biofuels 
Northwest (AHB) 

U of Washington Sept. 10, Seattle, 
WA 

82 14 

Bioenergy Alliance Network 
of the Rockies (BANR) 

Colorado State U Oct. 14, Missoula, 
MT 

63 6 

CenUSA Bioenergy Iowa State U July 28-29, Madison, 
WI 

57 8 

Southeast Partnership for 
Integrated Biomass Supply 
Systems (IBSS) 

U of Tennessee Aug. 10, Auburn, 
AL 

74 6 

Northwest Advanced 
Renewable Alliance (NARA) 

Washington State 
U 

Sept. 15, Spokane, 
WA 

98 22 

The Northeast Woody/Warm-
season Biomass Consortium 
(NEWBio) 

Pennsylvania 
State U 

Aug. 3-5, Morgan-
town, WV 

83 6 

Sustainable Bioproduct 
Initiative (SUBI) 

Louisiana State U Oct. 21, Baton 
Rouge, LA 

54 5 

Total: 511 67 

Industrial Conferences Organizer Dates & Location 
Academic 
researchers 

Industrial 
experts 

National Advanced Biofuel 
Conference & Expo 
(NABC&E) 

BBI International Oct. 26-28, Omaha, 
NE 

- 40

The 12th Advanced 
Bioeconomy Leadership 
Conference (ABLC) 

Biofuels Digest Nov. 2-5, San 
Francisco, CA 

- 60

Total: 100 

TASK 2: COMMERCIALIZATION FACTORS FOR  
THE U.S. CELLULOS BIOFUELS INDUSTRY
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Overall, these three groups of participants collectively represent a broad array of 
U.S. biofuels research and development perspectives.

RESULTS

Drivers for the commercialization of the U.S. cellulosic  
biofuels industry
As illustrated in Table VCO-2.3, this study’s 268 academic researchers and industrial 
experts rated government policies significantly higher than any other cellulosic 
biofuel scale-up driver, with an overall mean value of 4.63. Overall, added value 
from non-fuel co-products and carbon emission reduction were the second and 
third most important drivers, respectively. Interestingly, food-vs.-fuel debate was 
the lowest rated scale-up driver by our three expert groups, which is not surpris-
ing given the public’s skepticism regarding the impact on food security in the U.S. 
(Carus & Dammer, 2013).  Significant differences between mean values of importance of drivers for the three 

participant categories were found at the 0.05 significance level for 3 out of the 8 
drivers identified in this study (Table VCO-2.3). Graduate students and professors 
rated dependence on fossil fuels significantly higher than the industrial respon-
dents. Additionally, graduate students rated food-vs.-fuel debate and energy 
security as significantly more important drivers to cellulosic biofuel scale up as 
compared to industry. 

Comparing the three respondent groups, industrial experts clearly view potential 
cellulosic industry scale-up barriers differently vs. the other two groups (Table VCO-
2.4).  Industry views policy uncertainty and capital availability as significantly 
higher barriers and high production costs, competition vs. petro-fuels, and 
competition vs. corn-grain ethanol as significantly lower barriers compared to CAP 
researchers.  These findings underscore the importance of examining issues from 
multiple perspectives.

Table VCO-2.2. Participants’ Profile of Quantitative Surveys

Participants of 
Quantitative Surveys 

Study Participants 
(n) 

Average 
Research Experience 

(years) 
Graduate students 90 2.53 
Professors 129 8.63 
Industrial experts 551 11.45 

Table VCO-2.3. The mean value of importance1 of drivers for the scale-up of the U.S. cellulosic biofuels indus-
try and significant differences of perceived drivers among three participant categories: graduate students 
(Grad), professors (Prof), and industrial experts (Industry).
Scale-up 
DRIVERS 

Overall 
(n=268) 

Grad 
(n=87) 

Prof 
(n=126) 

Industry 
(n=55) Significance2 

Multiple- 
Comparisons3 

Mean value 
1. Government

policies
4.63 4.54 4.66 4.71 0.237 

2. Added value
from non-fuel
co-products

4.26 4.17 4.34 4.20 0.318 

3. Carbon emission
reduction

4.15 4.22 4.20 3.96 0.284 

4. Volatile oil
prices

4.08 4.08 4.09 4.06 0.974 

5. Dependence on
fossil fuels

3.99 4.18 4.01 3.64 0.004 Grad, 
Prof>Industry 

6. Rural economic
development

3.90 3.91 3.85 3.98 0.641 

7. Energy security 3.85 4.14 3.73 3.69 0.004 Grad >Prof, 
Industry 

8. Food-vs.-fuel
debate

3.19 3.39 3.21 2.84 0.017 Grad> Industry 

Multiple- 
Comparisons2 

1>2-8;
1-7>8

1-7>8 1>3-8;
1-7>8

1>3-8;
1-7>8;

- - 

1 Importance was measured using a 5-point Likert-scale, from 1=not important at all to 2=somewhat 
    unimportant to 3=neither important nor unimportant to 4=somewhat important to 5=very important. 2 

Based on parametric analysis of variance (ANOVA) test, bold = significant at the 0.05 level. 
3 Based on Tukey’s HSD (honest significant difference) test with 95% conference interval. 
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Ranking of barriers to the commercialization of cellulosic biofuels 
A follow-up RANKING question was designed to supplement and possibly confirm 
the RATING scale responses to better delineate potential barriers to the scale-up of 
the U.S. cellulosic biofuels industry (Dillman et al., 2014). Participants were asked to 
indicate the top three barriers by using the pull-down menu of the 9 barriers listed 
in previous rating question. The responses were given a value weighting of 3 points 
for the “#1 commercialization barrier”, 2 points for the “#2 commercialization barri-
er” and 1 point for the “#3 commercialization barrier” (Figure VCO-2.1).

 

Interestingly, the three highest RATED barriers to the commercialization of 
cellulosic biofuels (Table VCO-2.1) were also identified as the highest RANKED 
barriers in Table VCO-2.4.  However, competition vs. petro-fuels was, by far, the #1 
ranked “commercialization barrier” with an overall score of 326, followed by policy 
uncertainty (291), and high production costs (290). 

Conclusion
By understanding how academic researchers and industrial experts perceive cel-
lulosic biofuels commercialization, policy makers can increase the effectiveness of 
programs designed to encourage adoption and diffusion of cellulosic biofuels in the 
U.S. liquid transportation fuels market. 

Table VCO-2.4. The mean value of the degree1 of barriers to the scale-up of the U.S. cellulosic biofuels indus-
try and significant differences of perceived barriers among three participant categories: graduate students 
(Grad), professors (Prof), and industrial experts (Industry).

Scale-up 
BARRIERS 

Overall 
(n=264) 

Grad 
(n=88) 

Prof 
(n=121) 

Industry 
(n=55) Significance2 

Multiple- 
Comparisons3 

Mean value 
1. High production

costs
4.19 4.36 4.14 4.04 0.041 Grad>Industry 

2. Policy
uncertainty

4.17 4.05 4.12 4.45 0.019 Industry>Grad, 
Prof 

3. Competition vs.
petro-fuels

4.15 4.28 4.18 3.86 0.034 Grad>Industry 

4. Feedstock costs 3.86 3.91 3.88 3.73 0.502 
5. Capital

availability
3.74 3.57 3.74 4.02 0.037 Industry>Grad 

6. Technology
availability

3.54 3.53 3.60 3.40 0.443 

7. Cellulosic
biofuels logistics

3.50 3.55 3.55 3.29 0.165 

8. Consistent
feedstock supply

3.34 3.38 3.33 3.29 0.889 

9. Competition vs.
corn-grain
ethanol

2.94 3.23 2.85 2.69 0.003 Grad>Prof, 
Industry 

Multiple- 
Comparisons2 

1-3>4-9;
1-8>9

1-3>5-9;  1-3>5-9;
1-8>9

2>1, 3-9;
1-8>9

- - 

1 Degree was measured using a 5-point Likert-scale, from 1=not a barrier to 2=low barrier to 3=moderate 
     barrier to 4=high barrier to 5=very high barrier. 
2 Based on parametric analysis of variance (ANOVA) test, bold = significant at the 0.05 level. 
3 Based on Tukey’s HSD (honest significant difference) test with 95% conference interval. 
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Figure VCO-2.1. Top 3 highest scale-up barrier ranked by survey participants [n=261]
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OBJECTIVE
The overall goal of this subtask is to present a comprehensive review of the U.S. bio-
based chemicals industry.

METHODOLOGY/RESULTS/CONCLUSION
This section identified existing and proposed projects in the U.S. bio-based chem-
icals industry through company websites and secondary reports (e.g. Nova Insti-
tute). As of June 2016, thirty-five companies producing twenty bio-based chemicals 
were identified (Table VCO-3.1). These renewable chemical building blocks are or-
ganized by their carbon number, i.e. C3 to Cn. The microbial production of platform 
chemicals from carbohydrates has been the major conversion technique as shown 
in Table VCO-3.1.

These thirty-five companies may be categorized into three major groups, including 
“Chemical Giants”, “Biochemical Start-Ups”, and “Agricultural Giants”. 

Table VCO-3.1. U.S. bio-based chemical companies and their products (June 2016)

TASK 3: REVIEW OF THE U.S. BIO-BASED  
CHEMICALS INDUSTRY

Bio-based Chemicals Companies (n=35) Headquarters Conversion Technique 

C3 

Acrylic acid Blue Marble Biomaterials Missoula, MT Polyculture fermentation system 
Cargill, Incorporated Wayzata, MN Acquired OPXBIO’s EDGETM bioengineering 

technology 
SGA Polymers, LLC South Charleston, 

WV 
Converts lactic acid from carbohydrates into 
acrylic acid 

Lactic acid Blue Marble Biomaterials Missoula, MT Polyculture fermentation system 
DuPont Industrial Biosciences Itasca, IL DuPontTM GENECOR® fermentation system 
GlycosBio Biotechnologies Inc. Houston, TX Metabolic engineering and fermentation 
Myriant Corporation Woburn, MA Single step, anaerobic fermentation with 

engineered microorganisms and catalytic 
upgrading 

1,3-Propanediol (PDO) DuPont Tate & Lyle Bio 
Products Company, LLC 

Loudon, TN Convert corn glucose to Bio-PDOTM via 
fermentation 

C4 

n-Butanol &
isobutanol

Butamax Advanced Biofuels 
LLC 

Wilmington, DE Butamax™ technology is designed to convert the 
sugars from various biomass feedstocks, including 
corn and sugarcane, into biobutanol using existing 
biofuel production facilities  

Gevo Inc. Englewood, CO Production of isobutanol by using an integrated 
strategy of biological and chemical 

Working Bugs, LLC East Lansing, MI Fermentation processes 
Succinic acid &  
1,4-butanediol (BDO) 

BioAmber Inc. Plymouth, MN Industrial biotechnology and chemical catalysis 
Genomatica, Inc. San Diego, CA Integrated biotechnology platform 
Myriant Corporation Woburn, MA Single step, anaerobic fermentation with 

engineered microorganisms and catalytic 
upgrading 

Furans Micromidas Inc. West Sacramento, 
CA 

Use a non-fermentation, non-gasification, 
chemical-only process 

C5 

Isoprene GlycosBio Biotechnologies Inc. Houston, TX Metabolic engineering and fermentation 
Yulex Corporation Chandler, AZ Purifying process to remove over 99.9% of natural 

rubber harmful impurities 
Levulinic acids Segetis Golden Valley, MN Thermochemical conversion 

C6 1,6-hexanediol (1,6-HDO) Rennovia Inc. Santa Clara, CA Chemical catalytic process technology 
Adipic acid Rennovia Inc. Santa Clara, CA Chemical catalytic process technology 

Verdezyne Inc. Carlsbad, CA Fermentation 
Glucaric acid Rennovia Inc. Santa Clara, CA Chemical catalytic process technology 

Rivertop Renewables, Inc. Missoula, MT Novel Chemistry™ approach produces glucaric 
acid and other chemicals for consumer and 
industrial applications 

Hexamethylenediamine 
(HMD) 

Rennovia Inc. Santa Clara, CA Chemical catalytic process technology 

Benzene Anellotech Inc. Pearl River, NY Thermo Catalytic Biomass Conversion (Bio-
TCAT™) to produce a mixture of benzene, 
toluene, and xylenes (bio-BTX) 

Cn 

Cellulose &  
Cellulose acetate (CA) 

Celanese Acetate LLC Dallas, TX Cellulose acetate is derived from cellulose by 
deconstructing wood pulp into a purified fluffy 
white cellulose 

Eastman Chemical Company Kingsport, TN 
Innovia Films Atlanta, GA 
Rotuba Extruders Linden, NJ 

Polyamides (PA) Arizona Chemical Company, 
LLC 

Jacksonville, FL Convert benzene to polyamide 6 and 6,6, via 
cyclohexane 

Arkema King of Prussia, PA 
Polyethylene terephthalate 
(PET) 

Toray Plastic (America), Inc. North Kingstown, 
RI 

A polymer built up from the monomers mono-
ethylene glycol (MEG) and purified terephthalic 
acid (PTA) 

Polyhydroxyalkanoates 
(PHAs)  

Meredian Holdings Groups 
(MHG) 

Bainbridge, GA A group of microbial polyesters produced directly 
by fermentation 

Metabolix Inc. Lowell, MA 
Newlight Technologies LLC Costa Mesa, CA 

Polylactic acid (PLA) Corbion Lenexa, KS Corn or other raw materials are fermented to 
produce lactic acid, which is then polymerized to 
make polylactic acid (PLA) 

NatureWorks LLC Minnetonka, MN 
PolyOne Corporation Avon Lake, OH 

Starch blends StarchTech Inc. Minneapolis, MN Thermoplastic starch along with (modified) 
renewable polymers is used to produce starch 
blends 

Teknor Apex Pawtucket, RI 
Trellis Bioplastics Seymour, IN 
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OBJECTIVE
This subtask provides a roadmap to identify and assess value-added markets for 
industrial products through an examination of lignin-based products.  One val-
ue-added lignin product with potential, powdered activated carbon (PAC), is used 
to further demonstrate a process for examining market opportunities for biorefinery 
lignin waste streams. 

METHODOLOGY
This research deployed a multi-phase process including: a PAC vendor content anal-
ysis; and survey techniques (Figure VCO-4.1). A thorough literature review identified 
potential lignin-based value-added products. Powdered activated carbon (PAC) was 
selected as an appropriate “low-hanging” opportunity for biorefinery waste lignin 
and, as such, was used in subsequent research phases.  Phase I then analyzed web-
based content of PAC vendors’ promotional marketing literature tailored to power 
plant buyers/users for their PAC products. And, Phase II incorporated the Phase I 
results into an exploratory e-survey of select PAC buyers/users in the U.S. power 
generation industry. 

Phase I: PAC Vendor Content Analysis
In 2015, nine firms supplied PAC for mercury sequestration to U.S. coal-fired power 
plants, 8 of which were used in the Vendor Content Analysis due to a lack of PAC 
specific promotional marketing material from one of the vendor websites.  The 
population was identified through activated carbon market research reports (Table 
VCO-4.1) (Freedonia, 2013; Kahn, 2014; Marketsandmarkets.com, 2012; PR News-
wire, 2013; Anonymous, 2013).

This task used a summative content analysis (Hsieh & Shannon, 2005) to identify 
and quantify specific terminology using a word frequency count (WFC) applied 
to the promotional marketing materials of eight U.S. PAC suppliers. The WFC and 
text interpretation were categorized using a priori coding (Stemler, 2001). Content 
analysis media included all material related directly to mercury sequestration from 
flue gas streams from the company websites, product brochures, and product tech 
sheets of eight U.S. PAC supplying companies. 

Research suggests that industrial purchases are made on a set of value dimensions 
relating to product and service benefits or attributes (Ulaga & Eggert, 2005). The 
PAC vendor content analysis provided a systematic process to identify and code 
terminology into two mutually exclusive categories, product attributes and service 
attributes. A WFC was performed using MAXQDA software, identifying individual 
attributes mentioned most often, which were assumed to reflect high importance 
(Stemler, 2001). The attribute was then evaluated in the context of the document 
and sentenced to validate its importance to the analysis. Moreover, phrases and text 
were interpreted to code inferred attributes into individual attributes (Table VCO-
4.2). The counted words and phrases were coded by individual attributes that best 
reflected the meaning of the word or phrase.

Problem: 
Value-Added Applications for Biorefinery Waste Lignin 

Phase I: 
PAC Vendor Content Analysis 

Phase II: 
PAC Buyer/User Survey 

Objective: 
Assess the criteria on which PAC is 
currently promoted by vendors 

Objective: 
Explore attributes on which lignin-based 
PAC for mercury sequestration from 
electric generation power plant flue gas is 
purchased, examine barriers to entry and 
market opportunity  

Implications: 

• The process may be applied to investigate other value-added opportunities
• Lignin has a potential market application as PAC for mercury sequestration from

electric generating power plant flue gas
Figure VCO-4.1. Multi-phase process for new lignin product-market opportunity research.

Table VCO-4.1. PAC Vendors analyzed in the vendor content analysis (n=8)
*not included in vendor content analysis

PAC Vendor Print Media Access 
ADA Carbon Solutions www.ada-cs.com 
Albemarle Corporation www.albemarle.com 

Babcock Power Inc. www.babcockpower.com 
Cabot Carbon www.cabotcorp.com 

Calgon Carbon www.calgoncarbon.com 
Carbotech AC GMBH Carbotech.de/?lang=en 

Donau Chemie www.donau-carbon.com/?lang=en-US 
Jacobi Carbon www.jacobi.net 

CECA * www.cecachemicals.com 

TASK 4: OPPORTUNITIES FOR LIGNIN VALORIZATION
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Phase II: PAC Buyer/User Survey
Buyers/users of PAC, that is, electric generating power plants with ACI systems, 
assessed the importance of the Phase I product and service attributes, identified 
barriers to market entry, and evaluated market opportunity via an e-survey.
The Energy Information Administration (EIA) publishes an annually updated data-
base from EIA Form-860, which includes all buyers/users of PAC from U.S. power 
plants currently operating an activated carbon injection (ACI) system, or proposing 
to operate an ACI system. In 2014, 173 electric generating power plants using 356 
ACI units were identified (EIA, 2015a). The population for this study is all U.S. electric 
generating power plants currently operating or proposed to operate an ACI system 
included in a 2011 EPA online database (n = 98) (EPA, 2011). The 2011 EPA database 
included the most current available contact information for U.S. electric generating 
power plants (n=98) with ACI units delineated (n=261).  As shown in Figure VCO-4.2, 
U.S. power plants are located throughout the U.S. with concentrations along the 
upper Atlantic coast, and the upper Midwest.

The e-survey used SurveyMonkey (2015) and the data collection procedures were 
adapted from Don Dillman’s Guiding Principles for Mail and Internet Surveys (2012).  
First, three electric generating power plants were contacted by phone and sent a 
pretest e-survey to discern question ambiguity and sensitive information. From 
the pretest, a modified and reduced, 5-question survey was emailed as a link via 
SurveyMonkey (2015) to all remaining electric generating power plants (n=95) along 
with a cover letter explaining the purpose of the study and the confidentiality of 
responses. Follow-up efforts included 3 reminder emails at 1-week intervals. 
The overall response rate was 26.6 percent (17/64) after adjusting for unreachable 
power plants (n=34) due to erroneous contact information in the EPA (2011) online 
database.  The adjusted population for this exploratory study included 64 electric 
generating power plants with valid contact information from the EPA’s most current 
available database (EPA, 2011). Of the 17 participants, 4 are located in the upper 
Atlantic coast region, 1 in Florida, 7 in the upper mid-west, and 5 in the western U.S.  

Results
Phase I: PAC Vendor Content Analysis - PAC suppliers utilize promotional marketing 
materials; product brochures, company websites, and product technical sheets to 
market products towards customers for the application of mercury sequestration 
from power plant flue gas. The print media consisted of 163 pages with 486 word 
frequency counts (WFCs); product attributes received 408 WFCs and service attri-
butes 78 WFCs. 

Table VCO-4.2. Examples of attribute assignment to PAC suppliers’ web-based content

Print Media Content Attribute Interpretation 

“...tailored to meet your needs.” Customizable Product 

“...customized solutions...” Customizable Product 

“Reduced mercury emissions” Product Effectiveness 

“...effective in removing many flue gas 
contaminants.” Product Effectiveness 

 “...plant-tested and proven...” Proven Product Performance 

“...90% mercury removal was easily attainable 
with...” Proven Product Performance 

“...supply assurance...” Reliable Delivery 

“...an undisturbed supply of...” Reliable Delivery 

“Our Advanced Performance Guarantee...” Product Guarantee 

“We can guarantee...” Product Guarantee 
Figure VCO-4.2. Map of all U.S. power plants included in the EPA online database (2011) (n=98) delineating 
the contacted power plants (dark nodes; n=64) and the unreachable power plants (light nodes; n=34) (EIA, 
2011).
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Product and Service Attributes
Following compilation of the product and service attribute word frequency count 
(WFC), individual attributes were tallied based on frequency. Overall, vendors 
of PAC convey a general message to buyers/users that their products will meet 
customer needs through product attributes. Based on WFCs, the top three attri-
butes conveyed by vendors about their products were Concrete Friendly (WFC = 76), 
Product Effectiveness (WFC = 60) and Product Reliability (WFC = 44) (Table VCO-4.3). 
The service attributes most frequently mentioned were Reliable Delivery (WFC = 39) 
and ACI Installations (WFC = 18) (Table VCO-4.3). Analysis of the product and service 
attributes from the promotional marketing material provides insight into vendors’ 
product positioning and communication strategies. 

Phase II: PAC Buyer/User Survey

Powdered Activated Carbon (PAC) Product and Service attributes
In addition to the 13 product and service attributes derived from the content 
analysis of vendors’ promotional materials, Just-in-Time Delivery, Vendor Managed 
Inventory, List of Usage References and Delivered Price were added from the pretest 
results and listed in Figure VCO-4.3 without word frequency counts (WFCs).  

Product Reliability was rated as the most important attribute by buyers/users of 
PAC (mean = 5), followed by Product Effectiveness, Proven Performance, Reliable 
Delivery, Delivered Price, and Product Efficiency (Figure VCO-4.3). The least import-
ant attribute was ACI Equipment Installation (mean = 2.58). The highest rated ser-
vice attribute was Reliable Delivery (mean = 4.67), followed by Product Guarantee 
(mean = 4.25) and List of Usage References (mean = 3.83). The 10 product attributes 
(overall mean = 4.25) were, as a whole, rated higher than the 7 service attributes 
(mean = 3.53). Interestingly, PAC buyers/users rated Product Reliability, Effective-
ness and Performance higher than Delivered Price, suggesting opportunities to 
differentiate products on performance attributes.

Table VCO-4.3. Word Frequency Count of 13 product and service attributes identified in the content analysis 
of PAC vendors’ promotional marketing materials

9 Product Attributes Word Frequency Count (WFC) 
Concrete Friendly 76 

Product Effectiveness 60 
Product Reliability 44 

Density 41 
Product Efficiency 41 

Ignition Temperature 39 
Injection Rate 38 

Proven Product Performance 35 
Customizable Product 32 

Total (Product Attributes) 408 

4 Service Attributes Word Frequency Count (WFC) 
Reliable Delivery 39 
ACI Installations 18 
On-Site Support 12 

Product Guarantee 10 
Total (Service Attributes) 78 

Total  
(13 Product & Service Attributes) 486 

1
 Word Frequency Count (WFC) from the vendor content analysis of promotional marketing materials.  

2
Importance scale from: 1 (Unimportant) to 3 (Neither Important nor unimportant) to 5 (Extremely Important). 

2.58 
3.00 
3.00 

3.08 
3.08 

3.42 
3.50 

3.83 
4.17 

4.25 
4.58 

4.67 
4.67 
4.67 

4.83 
4.92 
5.00 

2.00 2.50 3.00 3.50 4.00 4.50 5.00 

ACI Equipment Installation (WFC = 18) 
On-Site ACI System Support (WFC = 12) 

Vendor Managed Inventory 2 
Customizable Product (WFC = 32) 

Concrete Friendly (WFC = 76) 
Just-In-Time Delivery 2 

Ignition Temperature (WFC = 39) 
List of Usage References 2 

Density Consistently on Spec 
Product Guarantee (WFC = 10) 

Injection Rate (WFC = 39) 
Product Efficiency (WFC = 41) 

Delivered Price 2 
Reliable Delivery (WFC = 39) 

Proven Product Performance (WFC = 35) 
Product Effectiveness (WFC = 60) 

Product Reliability (WFC = 44) 

Importance 2 Value 

Product & Service Attributes (WFC1) 

  Product Attributes 

  Service Attributes 

Product Attributes

Figure VCO-4.3. Product and service attribute ratings by PAC buyers/users from U.S. electric generating 
power plants (n=17). Question: [on a 5-point scale from 1=unimportant to 3=neither important nor unim-
portant to 5=extremely important] How IMPORTANT to your plant are the following PRODUCT and 
SERVICE attributes in the purchase of your powdered activated carbon product?
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Barriers to Entry
Another issue addressed in the e-survey to PAC buyers at U.S. electric generat-
ing power plants concerned potential entry barriers for a new, lignin-based PAC 
product. Specifically, respondents were asked to list (un-aided) in rank-order the 
top three barriers to their purchase of a new lignin-based PAC. The buyer/user entry 
barrier responses were given a value weighting of 5 points for the largest barrier, 3 
points for the second largest barrier and 1 point for the third largest barrier (Figure 
VCO-4.4). The barriers to entry were addressed as follows:

Title V Permits (weighted score = 18), such as a permit required for any physical 
plant change or change in the methods of plant operation, and Operational Impacts 
(weighted score = 16), that is, any impact on plant operations such as, down-time, 
or equipment change-over, represent the top two barriers to market entry for a lig-
nin-based PAC, followed by Compliance with Regulations (weighted score = 13), spe-
cifically, compliance with mercury emission regulations, and Unproven Performance 
(weighted score = 11), that is, a product not yet tested on a full scale power plant 

(Fig. 20). Additional entry barriers to a new lignin-based PAC products mentioned 
by PAC buyer/users include: Existing Vendor Contracts (weighted score = 9), Product 
Availability (score = 8), Cost (weighted score = 7) and Logistics (transportation and 
distribution concerns) (weighted score = 6). 

 
Opportunities for Substitution
Finally, the e-survey asked PAC buyers/users to indicate the likelihood that their 
power plant would test trial a new lignin-based PAC and their likeliness of purchas-
ing a new lignin-based PAC from an existing vendor or a new vendor. The 13 respon-
dents who answered the previous “…barriers to a new lignin-based PAC product for 
your power plant” (entry barriers) question were asked the following two questions: 

Question: [on a 5-point scale from 1=extremely unlikely to 3=neither unlikely 
nor likely to 5=extremely likely] Please indicate how LIKELY your plant is to 
consider a trial test for proof-of-concept of a lignin-based PAC, assuming 
similar price and performance as your current product?

Question: [on a 5-point scale from 1=extremely unlikely to 3=neither unlikely 
nor likely to 5=extremely likely] If the trial test proved lignin-based PAC to 
be a comparable product, how LIKELY is your plant to purchase lignin-
based PAC from an Existing Vendor, or a New Vendor?

Buyers/Users of PAC rated the likelihood of trial testing a new lignin-based PAC for 
proof-of-concept as 2.47 (5-point scale) with a standard devation of 1.19 (n=13) 
(Figure VCO-4.5). Respondents then indicated a somewhat stronger likelihood of 
purchasing a lignin-based PAC from an existing vendor at 3.00 with a standard 
devation of 1.00 (n=13) and 2.92 (n=13) from a new vendor with a standard devation 

1
Ranking scores from: 5 (Largest Barrier), 3 (Second Largest Barrier), 1 (Third Largest Barrier) 1 (Unimportant) to 3 (Neither Important nor 

unimportant) to 5 (Extremely Important). 

6 

7 

8 

8 
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16 

18 

0 2 4 6 8 10 12 14 16 18 20 

Logistics 

Cost 

Value (Price/Performance) 

Product Availability 

Existing Vendor Contracts 

Unproven Performance 

Compliance with Regulations 

Operational Impacts 

Title V Permitting 

Weighted Entry Barrier Ranking Score1

Figure VCO-4.4. Barriers to entry for a new lignin-based PAC product (n=13). Question: [on a 5-point scale 
from 1=extremely unlikely to 3=neither unlikely nor likely to 5=extremely likely] Please indicate the top 3 
barriers to a new lignin-based PAC product for your power plant.

1 
Likeliness scale from 1 (Extremely Unlikely) to 3 (Neither Likely, Nor Unlikely) to 5 (Extremely Likely)

3.00	

2.92	

2.47	

1.00 2.00 3.00 4.00 5.00 

Existing Vendor 

New Vendor 

Trial test for proof-of-concept  

Likeliness Scale 

Figure VCO-4.5. PAC buyers/users’ likeliness to consider purchasing lignin-based PAC from a new or existing 
vendor (n=13)
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of 0.95. 
Conclusion
This research provides insights to the PAC producing industry, biorefineries, and 
the pulp industry regarding the introduction of a lignin-based PAC as a value-added 
option for mercury sequestration from power plant flue gas streams. Policy makers 
may better understand the impact and reaction of new rules on electric generating 
power plants and peripheral industries. Lastly, this work illustrates a framework 
for exploring value-added business-to-business product-market opportunities and, 
specifically, opportunities for lignin valorization with a particular application to 
lignin-based PAC for mercury sequestration from electric generating power plant 
flue gas. 
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NARA OUTCOMES
No NARA outcomes were determined at the time of this report.

The analysis of the primary data of integrated biofuels and biochemical production 
and strategic buyer-seller relationships in channels is in progress. The final report 
for these topics will be available in late September 2016.

Whereas the process described in this report may be applied to multiple emerging 
lignin-based products across a wide array of industrial applications, this work 
addresses a single lignin valorization market opportunity, lignin-based powdered 
activated carbon (PAC). Results may be considered as exploratory due to the 
relatively small population size of 64 electric generating power plants with usable 
contact information and a limited response of 17 surveys.  The findings, however, 
may lay the groundwork for future work exploring market opportunities for other 
lignin-based products and in other business-to-business markets.

FUTURE DEVELOPMENT 
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