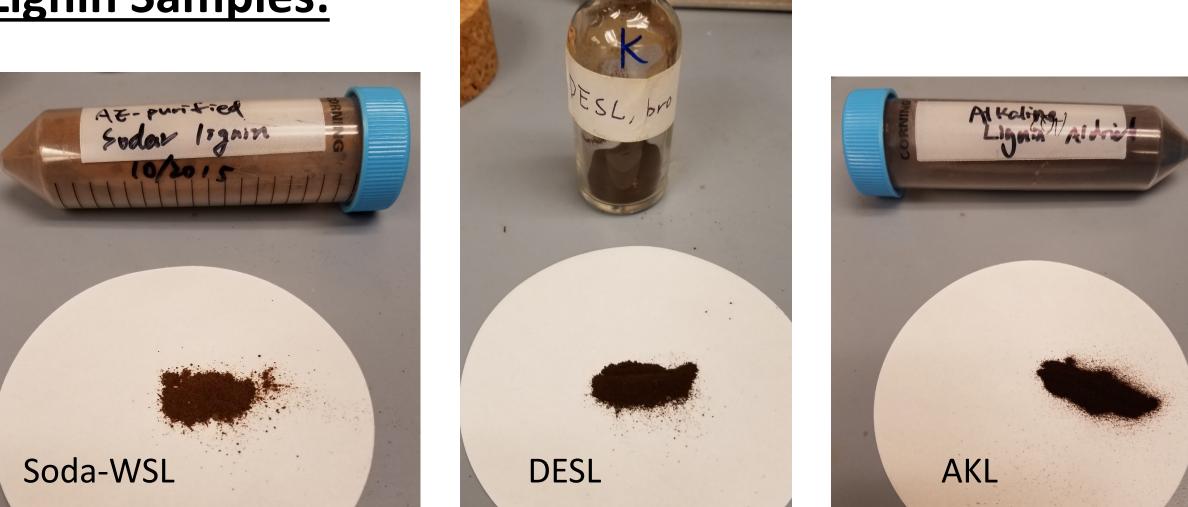
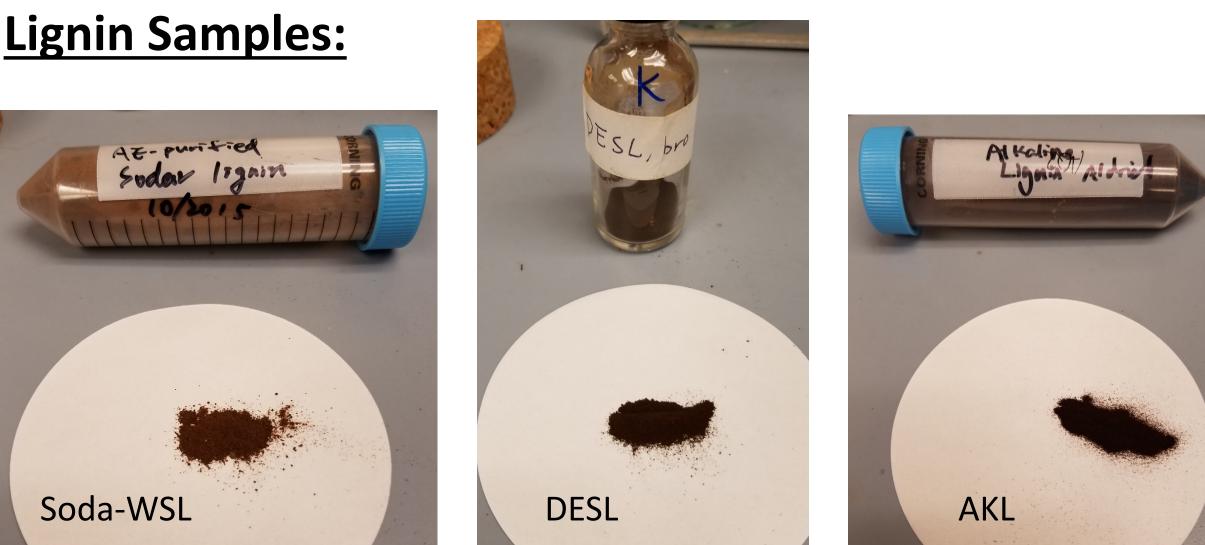


WASHINGTON STATE **J**NIVERSITY

Network for Seven Representative Biorefinery Lignin

William Daniels^{1,2}, Ruoshui Ma¹, Xiao Zhang³





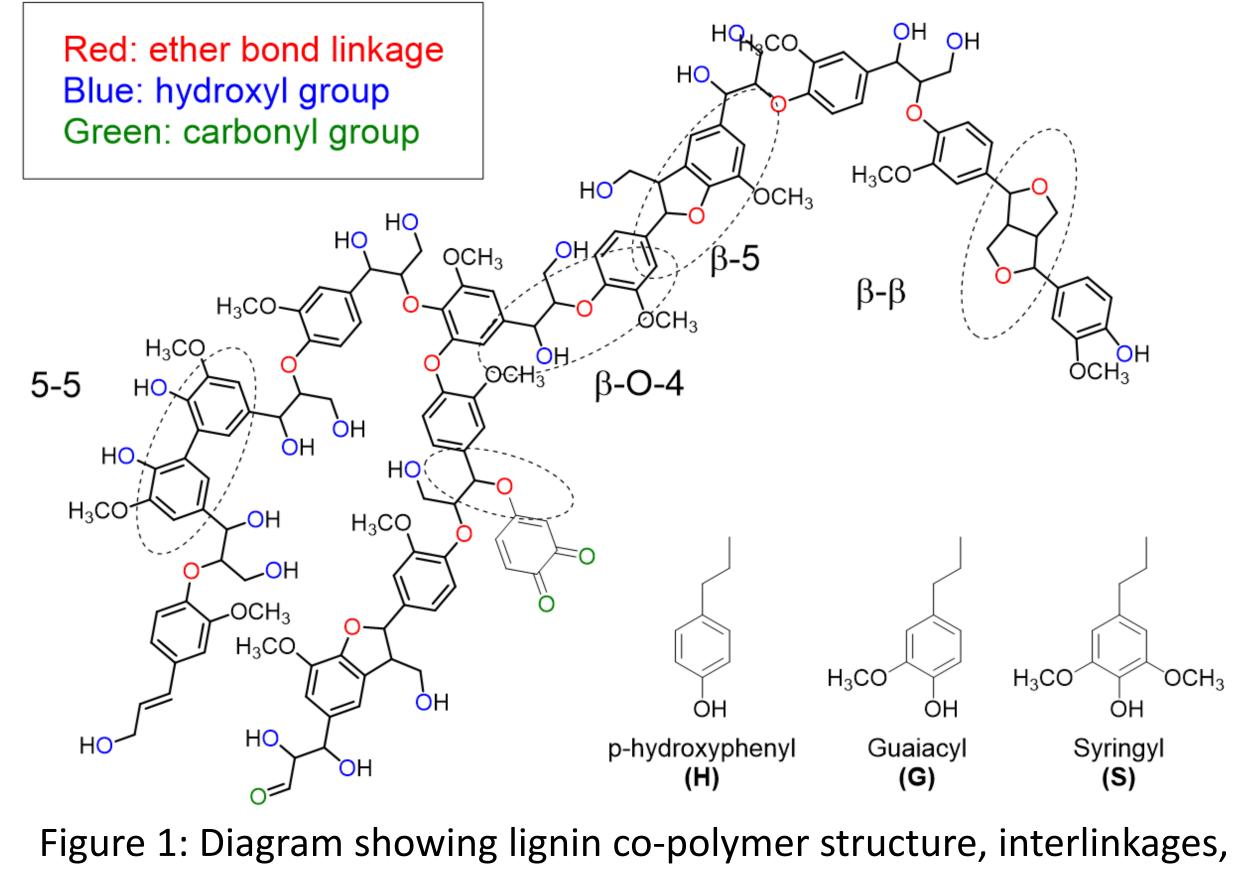
¹Washington State University School of Chemical Engineering and Bioengineering, ²Colorado School of Mines Chemical Engineering Department, ³Pacific Northwest National Laboratory (PNNL) Voiland School of Chemical Engineering and Bioengineering, Washington State University, Richland, WA

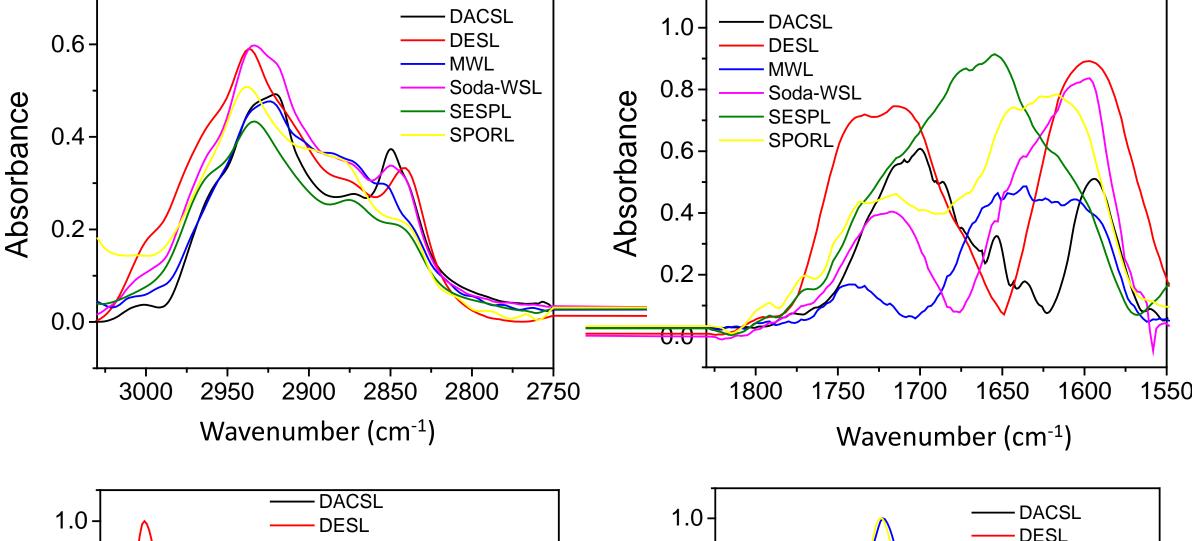
Introduction:

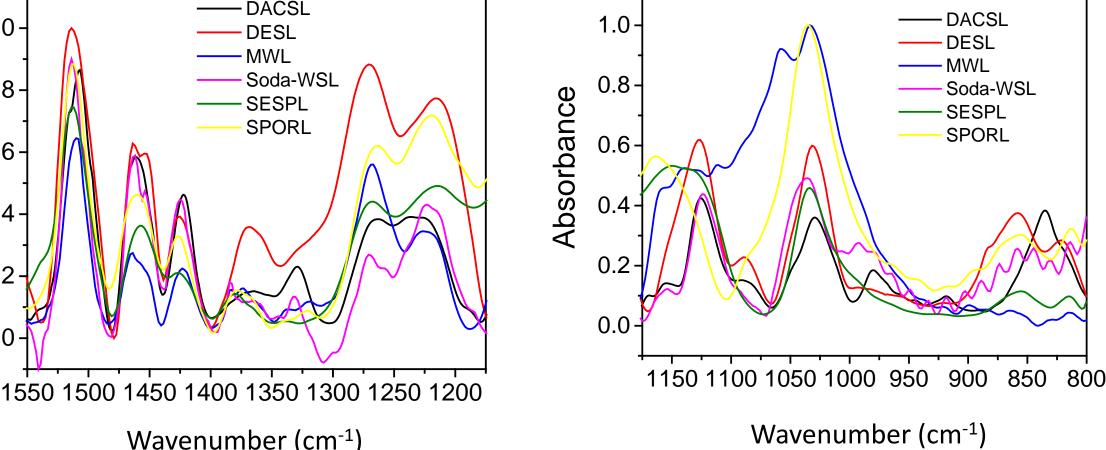
Along with cellulose and hemicellulose, lignin is one of the three major components of plant biomass, representing up to 40% of the dry weight. Because polysaccharides have been the primary focus for industrial applications, there is already a large amount of lignin being produced annually as a waste product. Therefore, lignin has begun to attract much attention as a potential renewable resource for bio-based materials, fuels, and chemicals. Lignin consists of three major subunits: syringyl (S), guaiacyl (G), and p-hydroxyphenyl (H), and there are a number of lignin sources available, including: wood pulp, corn stover, and wheat straw. However, many factors such as mother biomass source and extraction method result in different physical and chemical lignin properties. In this study, we provide an assembled analysis of seven representative biorefinery lignin.

Results Continued:

The comparative FT-IR spectrums are presented in four wavenumber segment as shown below, including 3050-2750 cm⁻¹, 1830-1550 cm⁻¹, 1550-1175 cm⁻¹, and 1175-800 cm⁻¹. These four segments of wavenumbers represent the regions




Figure 2: Image of Soda, deep eutectic solvent, and alkaline lignin samples.


Results:

Nitrobenzene oxidation and thioacidolysis show the relative abundance of the three lignin subunits. For most samples, the results from both methods clearly align.

	Alkaline Nitrobenzene Oxidation			Thioacidolysis					
	Н	G	S	Yield	Н	G	S	Yield	
AKL	2	98	-	5.6	8	92	-	5.8	
DACSL	25	31	43	34.1	23	31	46	22.4	Absorbance
SESPL	2	98	-	12.6	4	96	-	11.2	osorb
MWL	1	99	-	17.3	5	92	3	12.1	Ak
SPORL	-	96	4	22	2	85	13	3.4	
DESL	15	85	-	6.4	100	-	-	0.9	
Soda- WSL	7	50	43	13.7	9	45	46	10.6	

reflecting the functionality of C-H stretch in methyl and methylene groups, C=O stretch, aromatic skeletal vibration, and C-H deformation, respectively.

and subunits.

Materials and Methods:

Method	Characteristics	Spectral Region	Che Shift	
Lignin Compositio	Methoxyl	5		
Alkaline Nitrobenzene Oxidation	GHS ratio	content Car-H	12	
Thioacidolysis	GHS ratio	Car-C	14	
CHNO Elemental Analysis	C9 formula, side-chain oxygen content	Car-O Phenolic hydroxyl	16 17	
Spectroscopic A	Analysis	Aliphatic hydroxyl	171	
Fourier Transform Infrared Spectroscopy (FT-IR)	Functional groups	Saturated CH2 or CH3 on aliphatic	4	
UV-Vis Spectroscopy	Quinone quantification	side chain C-γ in β-5 and β-		
Nuclear Magnetic Resonance	Interlinkage structures	O-4 with C=O	6	
Spectroscopy (1H, 13C, 13C/1H		Cα in β-Ο-4	7	
HSQC)		C β in β-Ο-4	84	
		Table 2: Quanti	tative	

Table 1. Comparative analysis of GSH ratio of representative biorefinery lignins determined by alkaline nitrobenzene oxidation and

thioacidolysis.

13C NMR can identify minor structures not detectable by other methods. The abundance of these interlinkages is shown below.

	Chemical Shift (ppm)	Numbers of moieties per aromatic rings					
Spectral Region		MWL	DESL	DACSL	SESPL	Soda- WSL	
Methoxyl content	57-54	0.97	0.90	1.19	0.97	1.25	
Car-H	125-103	2.75	3.09	2.45	2.46	2.67	
Car-C	141-125	1.66	1.69	1.93	2.12	1.80	
Car-O	160-141	1.59	1.22	1.62	1.42	1.53	
Phenolic hydroxyl	174-171	0.05	0.49	0.22	0.30	0.01	
Aliphatic hydroxyl	171-168.5	1.62	1.54	0.95	1.03	1.30	
Saturated CH2 or CH3 on aliphatic side chain	40-20	1.83	1.97	2.33	2.41	1.93	
C-γ in β-5 and β- O-4 with C=O	64-62	0.65	ND	0.26	0.29	0.36	
Cα in β-O-4	71-73	0.57	ND	0.21	0.28	0.51	
Cβ in β-Ο-4	84.5-80	0.42	0.16	0.36	0.20	0.21	
Table 2: Quanti	tative 13C anal	ysis of five	e represer	ntative bio	orefinery l	ignins.	

Figure 3: FT-IR spectrums for representative biorefinery lignins.

Conclusion:

0.8

0.6

0.4

- Soda-WSL

Wavenumber (cm⁻¹)

This study has provided a detailed comparison of seven representative biorefinery lignins with regards to the molecular structure, interlinkage network, and side chain functionalities. Nitrobenzene oxidation and thioacidolysis showed the relative abundance of molecular subunits (GSH ratio), FTIR showed the presence of specific side chain functional groups, and 13C NMR allowed for an analysis of the interlinkage structures present in the lignins.

Future Application:

We believe that this study will provide new insight and methodology in biorefinery research, especially in lignin valorization. Furthermore, the assembled data can serve as a reference for future studies in lignin chemistry, as it presents a complete comparison of structural and interlinkage patterns between seven different lignin sources.

Acknowledgements:

This work as next of the Nextburget Advenced Densweehles

is work, as part of the Northwest Advanced Renewables
est Advanced
Northwest
the
part of
as
WOrk,
INIS

Alliance (NARA), was funded by the Agriculture and Food

Research Initiative Competitive Grant no. 2011-68005-30416

from the USDA National Institute of Food and Agriculture.